Construction and Analysis of Greedy Sequences of Non-Negative Integers

Atanas Iliev

American College of Sofia Under the direction of: Dr Katerina Velcheva

International Conference of Young Scientists, 2021

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Contents

1 Introduction

- 2 Solution to the Stanley sequence
- 3 Order of dependency; greedy sequences for which $O(G) \leq 3$
- 4 Greedy sequences for which O(G) > 3
- 5 Computer simulations
- 6 Conclusions

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Contents

1 Introduction

- 2 Solution to the Stanley sequence
- 3 Order of dependency; greedy sequences for which $O(G) \leq 3$
- 4 Greedy sequences for which O(G) > 3
- 5 Computer simulations

6 Conclusions

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Greedy Sequences

Definition of a greedy sequence of non-negative integers:

 A greedy sequence is a strictly increasing sequence of integer numbers, G, with a general term a_n.

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Greedy Sequences

Definition of a greedy sequence of non-negative integers:

- A greedy sequence is a strictly increasing sequence of integer numbers, G, with a general term a_n.
- The sequence begins with $a_0 = 0$.

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Greedy Sequences

Definition of a greedy sequence of non-negative integers:

- A greedy sequence is a strictly increasing sequence of integer numbers, G, with a general term a_n.
- The sequence begins with $a_0 = 0$.
- Every next member a_j is defined as the least natural number such that a_j > a_{j-1}, the condition
 a_{i1} + a_{i2} + a_{i3} + ... + a_{iy} ≠ p ⋅ a_{iz}, is true for all
 i₁, i₂, ..., i_z ∈ [0; j] where p is a fixed real number.

American College of Sofia

Under the direction of: Dr Katerina Velcheva

IntroductionSolution to the Stanley sequenceOrder of dependency; greedy sequences for which $O(G) \le 3$ Greedy sequences for one $00 \bullet$ 00000000000000000000

Example (Stanley sequence)

The greedy sequence that avoids forming an arithmetic progression:

• Equation to be met: $a_a + a_b \neq 2 \cdot a_c$.

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

IntroductionSolution to the Stanley sequenceOrder of dependency; greedy sequences for which $O(G) \le 3$ Greedy sequences for on $00 \bullet$ 00000000000000000000

Example (Stanley sequence)

The greedy sequence that avoids forming an arithmetic progression:

- Equation to be met: $a_a + a_b \neq 2 \cdot a_c$.
- Initially defined terms: $a_0 = 0, a_1 = 1$.

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

IntroductionSolution to the Stanley sequenceOrder of dependency; greedy sequences for which $O(G) \le 3$ Greedy sequences for on $00 \bullet$ 00000000000000000000

Example (Stanley sequence)

The greedy sequence that avoids forming an arithmetic progression:

- Equation to be met: $a_a + a_b \neq 2 \cdot a_c$.
- Initially defined terms: $a_0 = 0, a_1 = 1$.
- Denotation: G(1).

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Solution to the Stanley sequence	<i>Order of dependency</i> ; greedy sequences for which $O(G) \leq 3$	Greedy sequences for
•••••		

Contents

1 Introduction

2 Solution to the Stanley sequence

- 3 Order of dependency; greedy sequences for which $O(G) \leq 3$
- 4 Greedy sequences for which O(G) > 3
- 5 Computer simulations

6 Conclusions

Atanas Iliev

American College of Sofia

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ○ < ○
 Under the direction of: Dr Katerina Velcheva

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1								

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Table: First 10 indexes and members of G(1) written in bases 2,3

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3							

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Table: First 10 indexes and members of G(1) written in bases 2,3

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4						

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Table: First 10 indexes and members of G(1) written in bases 2,3

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9					

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Table: First 10 indexes and members of G(1) written in bases 2,3

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10				

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12			

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Table: First 10 indexes and members of G(1) written in bases 2,3

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12	13		

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12	13	27	

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12	13	27	28

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Table: First 10 indexes and members of G(1) written in bases 2,3

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12	13	27	28

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Index(2):	0	1	10				
Value(3):	0	1	10				

Table: First 10 indexes and members of G(1) written in bases 2, 3G(1)

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12	13	27	28

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Index(2):	0	1	10	11			
Value(3):	0	1	10	11			

 Table: First 10 indexes and members of G(1) written in bases 2,3

 Image: Contract of the second second

Construction and Analysis of Greedy Sequences of Non-Negative Integers

Atanas Iliev

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12	13	27	28

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Index(2):	0	1	10	11	100			
Value(3):	0	1	10	11	100			

Table: First 10 indexes and members of G(1) written in bases 2,3ICVS 202ICVS 202<tr

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12	13	27	28

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Index(2):	0	1	10	11	100	101		
Value(3):	0	1	10	11	100	101		

Table: First 10 indexes and members of G(1) written in bases 2,3

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12	13	27	28

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Index(2):	0	1	10	11	100	101	110		
Value(3):	0	1	10	11	100	101	110		

Table: First 10 indexes and members of G(1) written in bases 2,3

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12	13	27	28

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Index(2):	0	1	10	11	100	101	110	111	
Value(3):	0	1	10	11	100	101	110	111	

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12	13	27	28

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Index(2):	0	1	10	11	100	101	110	111	1000	
Value(3):	0	1	10	11	100	101	110	111	1000	

Table: First 10 indexes and members of G(1) written in bases 2,3ICVS 202ICVS 202<tr

Index:	0	1	2	3	4	5	6	7	8	9
Value:	0	1	3	4	9	10	12	13	27	28

Table: First 10 members of G(1)

R. P. Stanley observed the following:

Index(2):	0	1	10	11	100	101	110	111	1000	1001
Value(3):	0	1	10	11	100	101	110	111	1000	1001

Table: First 10 indexes and members of G(1) written in bases 2,3

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Solution to the Stanley sequence

Theorem:

The members of the greedy sequence G(1) are the integer numbers which ternary representation does not include a digit 2.

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Proof of the theorem

Criteria:

- Members of the sequence described by the theorem satisfy the condition of G(1), for whichever three terms.
- a_a and a_b don't include a 2, $\Rightarrow a_a + a_b$ has at least a single 1. Therefore it is different than $2 \cdot a_c$.

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Proof of the theorem

Criteria:

 A lexicographically smaller sequence satisfying the condition of G(1) should not exist.

By contradiction (a sequence with a general member b_n) we construct a counter example around α, β, b_m , where *m* is the smallest number for which $a_m \neq b_m$ and $\alpha, \beta \in G$.

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Constructing a formula for the members of G(1)

Method of construction:

• Writing the indexes in base 2: $|\log_2 n|$ divisions by 2.

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Constructing a formula for the members of G(1)

Method of construction:

- Writing the indexes in base 2: $\lfloor \log_2 n \rfloor$ divisions by 2.
- Acquiring the separate digits:

$$:: \left[\frac{n}{2^{i}} - \left\lfloor\frac{n}{2^{i}}\right\rfloor\right] \cdot 3^{i-1}$$

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Constructing a formula for the members of G(1)

Method of construction:

• Writing the indexes in base 2: $\lfloor \log_2 n \rfloor$ divisions by 2.

CYS 2021

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Solution to the Stanley sequence	<i>Order of dependency</i> ; greedy sequences for which $O(G) \leq 3$	Greedy sequences for
	00000	

Contents

1 Introduction

- 2 Solution to the Stanley sequence
- 3 Order of dependency; greedy sequences for which $O(G) \leq 3$
- 4 Greedy sequences for which O(G) > 3
- 5 Computer simulations

6 Conclusions

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

< 3

Solution to the Stanley sequence	<i>Order of dependency</i> ; greedy sequences for which $O(G) \leq 3$	Greedy sequences for
	0000	

Order of dependency

Method for construction

Denote:

$$p_1 \cdot a_1 + p_2 \cdot a_2 + \ldots + p_{t-1} \cdot a_{t-1} + p_t \cdot a_t \neq 0 \Rightarrow O(G) = t$$

Example:

Equation of the Stanley sequence: $a_a + a_b - 2 \cdot a_c \neq 0 \Rightarrow O(G) = 3$

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

< ∃⇒

IntroductionSolution to the Stanley sequenceOrder of dependency; greedy sequences for which $O(G) \le 3$ Greedy sequences for000000000000000000000

Sequences for which O(G) = 2

Equation from
$$O(G)$$
: $p_i \cdot a_i + p_j \cdot a_j \neq 0$

 p_i, p_j are of the same sign:

 $\Rightarrow G = \{0, 1, 2, \dots \infty\}$

 $p_{i}, p_{j} \text{ are of opposite signs: } j > i$ $WLG \Rightarrow a_{j} \neq -\frac{p_{i}}{p_{j}} \cdot a_{i}$ $\Rightarrow a_{n} = n + \left\lfloor \frac{n \cdot \gcd(p_{i}, p_{j})}{p_{i}} \right\rfloor$

Example:

$$-\frac{6}{-3} \cdot a_i = \frac{6}{3} \cdot a_i \neq a_j \Rightarrow: \text{ first members are: } 0, 1, 3, 5, 7, 9, 11.$$

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Construction and Analysis of Greedy Sequences of Non-Negative Integers

ICVS 2021

Sequences for which O(G) = 3

Equation of the sequences: $p_i \cdot a_i + p_j \cdot a_j + p_k \cdot a_k \neq 0$

Stanley-like sequences:

• Equation from O(G): $a_i + a_j \neq -p_k \cdot a_k$

•
$$p_k < 0$$
 or $G = \{0, 1, 2, ..., \infty\}$

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Solution to the Stanley sequence	Order of dependency; greedy sequences for which $O(G) \leq 3$	Greedy sequences for
	00000	

Sequences for which O(G) = 3

Interesting cases of Stanley-like sequences:

 $p_{k} = -1 : \Rightarrow \text{ a sequence "avoiding" the}$ Fibonacci one (0, 1, 2, 4, 7, 10, 13, 16, ...): $p_{k} \leq -2 \text{ with additional}$ condition $a_{k}: G = \{0, 1, 2, ..., \infty\}$ $a_{n} = n \cdot \left\lfloor \frac{6}{n+4} \right\rfloor + (1+3 \cdot (n-2)) \cdot \left\lceil \frac{n-2}{n+4} \right\rceil$

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Solution to the Stanley sequence	<i>Order of dependency</i> ; greedy sequences for which $O(G) \leq 3$	Greedy sequences for
		•0

Contents

1 Introduction

- 2 Solution to the Stanley sequence
- 3 Order of dependency; greedy sequences for which $O(G) \leq 3$
- 4 Greedy sequences for which O(G) > 3
- 5 Computer simulations

6 Conclusions

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

< 3

Greedy sequences for which O(G) = 4

Stanley-like sequences with additional condition for which O(G) = 4Equation of the sequences: $a_i + a_i + a_k \neq -p_n \cdot a_n$ $p_n \in (-\infty; -2) \cup (0; \infty) \Rightarrow G = \{0, 1, 2, \dots, \infty\}$ $p_n = -1 \Rightarrow$: $a_n = \left(2^n - n - \left|\frac{1}{n+1}\right|\right) \cdot \left|\frac{12}{n+8}\right| + (1 + 7 \cdot (n-3)) \cdot \left|\frac{n-4}{n+8}\right|$ $p_n = -2 \Rightarrow$: $a_n = n \cdot \left\lfloor \frac{12}{n+8} \right\rfloor + (1+2 \cdot (n-3)) \cdot \left\lceil \frac{n-4}{n+8} \right\rceil$ < 同 > < 三 > < 三 >

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Contents

1 Introduction

- 2 Solution to the Stanley sequence
- 3 Order of dependency; greedy sequences for which $O(G) \leq 3$
- 4 Greedy sequences for which O(G) > 3
- 5 Computer simulations

6 Conclusions

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

 $\begin{array}{ccc} \text{Introduction} & \text{Solution to the Stanley sequence} & \textit{Order of dependency; greedy sequences for which } O(G) \leq 3 & \text{Greedy sequences for occur} \\ \text{occur} & \text{occur} & \text{occur} & \text{occur} \\ \text{occur} & \text{occur} & \text{occur} & \text{occur} & \text{occur} \\ \text{occur} & \text{occur} & \text{occur} \\ \text{oc$

Review of conducted simulations

Hypothesis

Every member of a given *Stanley-like* sequence is a number which can be written in a specific number sequence and read in another one.

Explored ranges:

- $O(G) \in [2; 25]$
- $p_n \in [-1000; -1]$
- x ∈ [2; 100], where x is the base of the "writing" number sequence.
- y ∈ [3; 100], where y is the base of the "reading" number sequence.

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Contents

1 Introduction

- 2 Solution to the Stanley sequence
- 3 Order of dependency; greedy sequences for which $O(G) \leq 3$
- 4 Greedy sequences for which O(G) > 3
- 5 Computer simulations

6 Conclusions

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

Summary of original results

Stanley sequence:

- Alternative proof of the Stanley theorem;
- An explicit formula for the construction of terms of G(1);
- Stanley-like sequences:
 - O(G) = 2 complete analysis including a proof and a construction formula;
 - O(G) = 3 with additional condition complete analysis including proofs and construction formulae;
 - O(G) = 4 with additional condition complete analysis including proofs and construction formulae;
- Computer simulations: refuting of the hypothesis in the explored ranges;

Acknowledgements

- Dr Katerina Velcheva
- International Conference of Young Scientists
- High School Students Institute of Mathematics and Informatics
- Bulgarian Academy of Sciences
- Union of Bulgarian Mathematicians
- American College of Sofia

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva

 $\begin{array}{ccc} \text{Introduction} & \text{Solution to the Stanley sequence} & \textit{Order of dependency; greedy sequences for which } O(G) \leq 3 & \text{Greedy sequences for occur} \\ \text{occur} & \text{occur} & \text{occur} & \text{occur} \\ \text{occur} & \text{occur} & \text{occur} & \text{occur} & \text{occur} \\ \text{occur} & \text{occur} & \text{occur} & \text{oc$

Thank you for the attention!

Atanas Iliev

American College of Sofia

Under the direction of: Dr Katerina Velcheva