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Abstract

In this paper, we propose an alternative way to calibrate one-factor
interest rate models. Instead of using the interest rate yield curve, we
suggest that they are anchored to the interest rate futures curve. We
implement the Ho-Lee model due to its simplicity and tractability. We
fitted this model to the 3 month SOFR futures curve and used it to
predict zero-coupon bond prices. Finally, we suggest future steps to
expand on a more sophisticated volatility function and using T‘*EI as
the mean reverting term in the drift function.

1 Introduction

One-factor interest rate models are fundamental tools in financial mathe-
matics and quantitative finance, playing a crucial role in understanding and
modeling the evolution of interest rates over time. These models, including
seminal frameworks such as the Ho-Lee, Vasicek, and Hull-White models,
focus on the dynamics of a single factor: the short-term interest rate. One-
factor models can capture key characteristics of interest rate behavior, such
as mean reversion and volatility, which are critical for accurately reflecting
market conditions. These models are described using an SDE of the form:

dr = Adt + BdW

where dWW is the stochastic term, A is the drift function, and B is the volatility
function.

These models are heavily used for pricing various fixed-income securities,
pricing interest rate derivatives, and enabling financial professionals to de-
velop and implement sophisticated strategies for managing interest rate risk.
To be able to ‘correctly’ price fixed income instruments, the drift functions
of these models are calibrated to the yield curve[d]. Yield curve fitting has
some textbook problems. One fundamental problem with yield curve fitting
is the assumption that if market prices of simple bonds are accurately rep-
resented by a model at a certain time time, then recalibrating the model
after a short period (such as one week) should yield minimal changes in the
fitted function[7]. However, empirical evidence shows that this is rarely the
case. When revisited after a week, the function often changes significantly,
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indicating that the model does not hold consistently over time. This discrep-
ancy suggests a fundamental flaw in the model’s assumptions or its ability
to capture the true dynamics of the yield curve.

We focus on other problems that the use of the yield curve presents.
The yield curve can not be considered a reliable estimate of future interest
rates, especially in the short term. Both ends of the yield curve are heavily
influenced by the Fed’s monetary policy regime - in the short end, the Fed
controls (the effective FFR and therefore) short term rates through open
market operations and in the long end, the Fed intervenes through ‘large
scale asset purchases’ (quantitative easing).

The Fed consistently intervened to keep short term rates near zero from
2008-2023 and swelled their balance sheet to $9 trillion after buying almost
1-in-3 bonds in existence. We argue that the yield curve is not an indicator
for future interest rate expectations but a snapshot on any given day that
represents the Fed’s monetary policy.

The blip in the 20Y treasury yield presents another problem in using
the yield curve as a predictor for interest rates. The 20Y treasury, since its
reintroduction, trades at higher yields than its 10Y and 30Y versions due to
poor liquidity /demand for that specific tenor. We also argue that the yield
curve is influenced by the supply/demand and liquidity dynamics of bonds
and may not be able to cleanly capture future rate expectations.

We will use the Ho-Lee interest rate model and will calibrate it to the
interest rate futures market (3-mo SOFR). The Ho-Lee model provides us
with an easy to calibrate model. Additionally, interest rate futures are highly
liquid and are a good proxy for market expectation of interest rates since they
are by definition priced as an even risk neutral bet on future interest rates[6].
Therefore, they can act as a good proxy for interest rate expectations.

We chose to model the SOFR rate given its paramount importance in the
repo market (an essential mechanism in the financial market with $3.3T in
daily outstanding repos on average) and its use in pricing interest rate swaps,
which have a total notional value of $100T in 1Q2024.

The paper now shifts to the methodology we employed to implement the
model.



2 Methodology

In this section we discuss the methodology we used to achieve the aims of
the paper. In particular, we discuss the specifics about the implementation
of the Ho-Lee model for our purposes. We go over both the algorithmic
methodology and the technical particularities around the implementation
(necessitated by and specific to Python 3) Along the way, we make note of
all the assumptions necessitated by the scale and scope of the project.

We begin by discussing all the variables needed for a successful imple-
mentation of the interest-rate model.

2.1 Initial Variables

The first few variables we need are an initial interest rate rg, time difference
dt, volatility o, initial drift x, number of steps 7', an array of rates r, and an
array of prices A.

Let us briefly mention the precise meanings of dt and T. The former
denotes the time difference between two levels of our tree and is measured
out of 1 year. For example, dt = 0.25 tells us that any two levels in our tree
take place exactly 12 - 0.25 = 3 months apart. In contrast, T is simply the
number of steps in the calculation of the interest rates / prices, and hence
the number of levels in the tree. In particular, the total time covered by a
given tree simulation is calculated as (T'— 1) - dt. Thus, if 7= 3 and dt is as
before, the simulation goes only 6 and not 9 months in to the future.

Our initial aim was to come up with some function to model volatility
better than keeping it constant. Due to time constraints, we decided to keep
it fixed in the end, and have implemented our algorithm in a way that allows
for an immediate modification of the volatility should the reader prefer to use
a non-constant function. Initially, we used o = 0.0025 = 0.25%[7]. This is
based on the usual change caused by the interference of the Fed (25 bps). The
reader is welcome to adjust this to their preference. Additionally, u = [0.0].
Notice that the drift is an array and not just a single number. This is so
because of the fitting we describe later. Essentially, at each step in the tree,
we want to use such drift that the difference between our predicted rate/price
and the actual one is minimized.

Next, we have r, a list of all the rates we want to use. This is also the data
we have collected. More on that in another section. Notice that 1o = r[0].
The reason for it’s separation lies in an earlier version of our algorithm that



only simulated a fixed low number of steps. We have decided to keep it
separate for time sake and the simplicity it brings to the write up of the
actual paper. To get from r to A, our list of prices, we perform a very simple
calculation. For each i between 0 and len(r), denoting the length of r, we
take r[i] and multiply that by —#% = 100.0 - e+ Hence, our prices
in A are in fact the prices of zero-coupon bonds, that follow from the rates
we have collected in 7.

From here, it is somewhat easy to see that T" will eventually be exactly
len(r) +1 = len(A) + 1. This is because we want our final tree to have
computed len(r) = len(A) levels. Notice, that T" will also be equal to len(u).
In our case, T" ended up equal to 25, because we used quarterly data from
June 2024 to March 2030[1], inclusive?]

In particular the data we downloaded and subsequently used from Chicago
Mercantile Exchange website was the prices for SOFR futures that we used
to obtain quarterly interest rates from June 2024 to March 2030 as described
in the previous sentence[2].

Now, we are done with the review of our initial variables and we can
move to the discussion of the implementation of the actual algorithm.

2.2 The Implementation of the Ho-Lee Model

In this subsection we discuss the specific Python implementation of the Ho-
Lee Model we developed. We first describe the main algorithm in general
terms. Then we look at each subroutine (method) in detail.

The general structure of our algorithm is quite simple. Our aim is to
produce 2(7T" — 1) trees. Trees come in pairs. For each different number of
time steps, we want to give a tree simulating the possible evolution of the
interest rates. Then we want to apply that tree to calculate the prices of
zero-coupon bonds given by those very rates. This results in the second tree
for a given number of time steps.

Naturally, we begin by looping over a range of values for number of time
steps up to T'— 1. For each such value we then have several major jobs. First,
we compute a tred| for rates. Second, we compute another tree for prices of
zero-coupon bonds. Then we calculate an error term using that latter tree

2The rates are published in March, June, September, and December every year. Thus,
we have 344 -5+ 1 = 24 rates in total.
3Notice that neither this tree nor the one from the next sentence are actually returned.



and the values from A. Next, we minimize the error term at each step in the
calculation. Doing this we obtain a value which we append to . We then use
the updated list 4 to calculate new versions of the first 2 trees we computed.
Finally, we return the fitted trees. We then increment the number of time
stepsﬂ

In total, there are 4 helper functions. One for the construction of a rates
tree. One for the construction of a prices tree. Another for finding the
error term (or gap) between our predicted rates/prices and the ones we get
from r/A. A final one for minimizing that gap. We now discuss each of
those subroutines in detail. The first three are separated into their own sub-
subsections. The last one is a built-in Python method so we discuss it briefly
here before proceeding with the rest.

In order to minimize the error term, we use a method called minimize
from scipy (specifically scipy.optimize in Python 3). The method takes 4
arguments. First, it takes another method to be minimized. Next, it take an
argument taken by the other function (the one to be minimized) to return
such that the function in question is minimized. Third it takes as a list,
any arguments that method to be minimized needs or may take. Finally,
as an optional parameter, it takes a method (given as a string) to use when
minimizing[4]. Admittedly, for our project’s sake this choice did not matter
that much given that the ‘hardest’ of our to be minimized functions are just
exponential. Regardless, we used the L-BFGS-B methodﬂ.

Notice that minimize is returning a value such that it method it takes is
literally minimized. Hence, this has the potential to cause problems. Notice,
that we called our error term a gap. If we were to take a literal difference
between our predicted values and the actual values given by r/A, that would
be disastrous. Given that this function is basically a difference, it is probably
minimized in a way that results in a value that is negative and not exactly
0 which we want if it is indeed a gap. Hence, whatever function we are
minimizing, has to have a theoretical minimum at 0. We explain how we
deal with this in the subsection about the last helper function.

Last, we mention that an alternative way to deal with this issue would
be to use another built-in method called fsolve. As one might guess given

4The actual implementation works a bit different, but it does not affect the procedure.
In our actual code only the error-finding function is called in the main loop, with the first
two subroutines getting called only in the error-finding function. Afterwards, the process
continues as described.

5Tt might be important to note that it tends to overestimate rather than underestimate.



the name, it returns a root of the function it takes, instead of a value that
minimizes it. We opted not to do this for several reasons. Issues sometimes
arrise with fsolve because of the need to take the square root of negative
numbers or due to the additional check required to see whether we have
found a minimum or a maximum[6]. Now that we have discussed minimize
we proceed to review the other supplementary functions.

2.2.1 Building the Rates Tree

The first helper function we discuss is responsible for the computation of the
tree giving the interest rates over the examined time period. We call that
function tree. It takes 4 self-explanatory arguments: u, rg, o, dt. First, we
get ourselves a simple t = len(u) for the number of time steps. Next, we
make ourselves a t X t matrix consisting of zeros using np.zeros from numpy.
We call this matrix rates.

As one might expect with 2-dimensional matrices, what follows is a nested
loop. First, we loop a variable j from 0 to t. Then we loop another variable
i from jf| to t. If both variables are 0 we are at the very beginning and we
just set rates[t — 1][i] to our initial rate (o). If only j is O (notice that the
opposite is impossible), we set it to the previous element (rates|t — 1][i — 1])
plus u[i)dt — o+/dt. The last follows from the Ho-Lee model and reveals that
we have an arithmetic Brownian motion. Last, if neither variable is 0, we are
finished with rates[t — 1] and we now set rates|t — j — 1][i] to rates[t — 1][i]
plus 2.0 - jo/dt. A quick check reveal we have now filled exactly half of
the tree (the upper half remains filled with zeros and we do not use it). We
conclude by returning rates.

We can now move to the function responsible for the computation and
production of the prices tree.

2.2.2 Building the Prices Tree

As mentioned above, the second helper function builds the tree responsible
for the prices (of zero-coupon bonds such as STRIPS). We call that function
zc. This method takes two arguments. First, a tree rt produced by the tree
method| Second, it takes dt needed for the actual computation.

6Those are usually reversed, but we did not notice that until we were late enough into
the code that it wasn’t worth replacing everything.
"Technically it takes any 2-dimensional list.



First, as before, we get our number of time steps from the tree we already
have (last time we used the drift list ). Now, we get ¢ = rt.shape[0] using
shape in Python. We then create our regular empty ¢ X ¢ matrix just as
before and we call it zct (from zero-coupon tree). Next, we have the exact
same nested loop, but the counter variables 7, j are no longer swapped.

First, if i = 0 we simply set zct[j][t — 1 — 4] to 100.0 - e "tUllE=1=d* Once
we are done with those and ¢ is no longer 0, we continue to set the same
zet[§][t — 1 — 1] to 0.5(zct[j][t — i] + zct[j — 1][t —4]) - e "HWlE=1=1ld?  The first
part is just the expected value. We assume that the up and down movements
have equal probability of occurring. Finally, we return zct having again filled
the lower half of the matrix.

We now move to the last helper function that we have not yet reviewed.

2.2.3 Calculating the Error Term

Our last helper function is called zc_err. It takes four parameters: u, A and
then param, drift. You may notice we have both p and drift. The latter is
going to be constantly appended at each step in the calculation whereas the
former is only used in the beginning. This is purely a stylistic choice. Mean-
while, param is just a collection of variables in a list. It contains r¢, o, dt. We
got that idea from minimize as discussed above. We get our ¢ from len(drift)
but we must not forget to add 1 for the final step. We then construct rt and
zct by calling tree and zc respectfully using the exact arguments described
above. Finally, calculate and return the squared difference of each element of
zct with each element of Aﬂ Notice that in this way, we have something iso-
morphic, but not equal to the gap and we remove the possibility of minimize
malfunctioning as describe at the beginning of this subsection. The output
we return is a list containing all those squared differences as elements.

Now we plug all that back into our main function and construct our final
trees appending p after each step with a drift that minimizes the square dif-
ference. This produces our final 48 trees (24 pairs) which we print tabulated.
This conclude our methodology section and allows us to move to the results
section.

8 Alternatively, we could skip computing zct and just compare the elements of rt to
those of r provided we have r instead of A as an argument of zc_err



3 Results

In this section we carefully examine all of our results. First, we go over
the data we have computed. Then in the Conclusion subsection we draw
takeaways.

3.1 Data Results

In total, we have built 96 trees. Of them, 48 are interest-rate trees, and 48
are zero-coupon bonds price trees. Of each of those, exactly 24 are fitted
by modifying the drift so as to minimize the squared difference between the
rates/prices predicted in the first 48 trees and the actual rates/prices given
by r/A respectively.

Of the 48 fitted trees, we have 24 pairs of interest rates and zero-coupon
bond prices trees. Each pair has a unique number of time steps ranging from
1 to 24. Thus, our first two fitted trees have 2 levels each, and our last two
fitted trees have 25 levels each.

Each tree is a ¢ x t matrix where ¢ is the number of time stepd’] for that
tree. The upper-left half is empty (filled with zeros), and the other one is
the actual tree. Only the fitted trees are kept. Here is a screenshot for the
pair of fitted trees at t = 1@.

9Note that ¢ and T are distinct. Whereas T goes to 25, t only goes to 24.
10 Al fitted trees can be studied in the Jupyter Notebook we are attaching to our sub-
mission.



Figure 1: Fitted rates/prices tree pair at t = 10

In our model, the price of a $1 zero coupon bond would be e~ ("1dt1tradizt...mdtn)

where the sum of all dt; equals the tenor of the zero, and r; represents the
3-mo SOFR at the start of the period dt;. Pricing a floating rate payment
schedule based on the 3-mo SOFR can be done by considering each payment
as a zero, and adding the price of all zeros. If there is a credit spread above
SOFR, then the credit spread should be added to each r;.

Notice that the first level of every zero-coupon price tree is our prediction
for the current price of a zero-coupon bond with the respective maturity right
now. To see why this is the case, let us recall the way in which that value
is obtained. In particular, we start with two lists » and A for the rates and
zero-coupon prices right now respectively. So given that the prices in A are
computed from r and dt it makes sense to ask why we compute the fitted
tree for the zero-coupon bond prices and don’t just use the values given by
A. This is particularly important given that it is true that we don’t need
to produce the whole tree to find those values. This is the case because
we are aware of the specific path the futures rates are takingjﬂ However,
using that approach, the initial computation becomes cumbersome because
the discounting period between any two rates can vary. We can’t rely on
a more general approximation, as we do in A (described in Methodology).
Instead, we first fit the tree and apply the optimal drifts at each step. Then

I This is because we have them in advance.
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once we have the whole initial tree, we fit it going backwards to produce the
fitted one. At the very end we get to the correct value of the given element of
A and we use that as our prediction for the value of the specific zero-coupon
bond right now.

Here is a screen shot of our prediction of for the current price of zero-
coupon bonds with 24 different maturities at quarterly intervals from June,
2024 to March, 2030.

Figure 2: Predicted Prices for 24 Zero-Coupon Bonds

These values are stored in a list called simply bonds. This is an important
result on its own because we use exactly those values to determine how
successful our model is at pricing zeros. Now that we surveyed all the results
we obtained, we are about to discuss exactly that.

3.2 Conclusion

To determine the success of our model, we compared our predicted prices for
the different maturity zero-coupon bonds right now to the actual prices of
STRIPS with the closest maturities. Unfortunately, it wasn’t possible to do
a comparison of the exact same maturities because our zero-coupon bonds
expire at the end of every third month and the real life actual STRIPS
expire two and a half months later[3]. Despite that, our results signal the
model is performing quite well. Here is a picture detailing the actual prices
and our prediction for the price of a zero-coupon bond with the respective
corresponding maturity.
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Market Prices of Treasury Strips

Maturity Date
8/15/24
11/15/24
2/15/25
5/15/25
8/15/25
11/15/25
2/15/26
5/15/26
8/15/26
11/15/26
2/15/27
5/15/27
8/15/27
11/15/27

Price ofa100 Zero
98.883599
97.615901
96.473635

95.31534
94.183485
93.077935
91.933088

90.99196

90.05698
89.159765

88.22141

87.24726
86.269775
85.334977

Model Predicted Prices

Maturity Date

6/30/24
9/30/24

12/30/24

3/30/25
6/30/25
9/30/25

12/30/25

3/30/26
6/30/26
9/30/26

12/30/26

3/30/27
6/30/27
9/30/27

Price ofa100 Zero

98.6738716
97.43350896
96.31221808
95.31337871
94.41218904
93.58500672
92.81610648
92.05352359
91.26982106

90.4837418
89.73134817
88.93183576
88.15266897

87.3322828

Figure 3: Actual STRIPS Prices vs Predicted Zero-Coupon Bonds Prices

As one can see our prediction is within $1 of the actual strip price for
exactly half of all computed pairs.
Last, we present some comparisons between the actual and predicted
prices with the respective days to maturity of each pair of strip and zero-
coupon bond. Again, our predictions are quite close. The results are pre-
sented in the following two graphics.

Days to Maturity Market Price of a $100 Zero

80.00
172.00
264.00
353.00
445.00
537.00
629.00
718.00
810.00
902.00
994.00

1083.00
1175.00
1267.00

$98.88
$97.62
$96.47
$95.32
$94.18
$93.08
$91.93
$90.99
$90.06
$89.16
$88.22
$87.25
$86.27
$85.33

34.00
126.00
217.00
307.00
399.00
491.00
582.00
672.00
764.00
856.00
947.00

1037.00
1129.00
1221.00

Days to Maturity Model Price of a $100 Zero

$98.67
$97.43
$96.31
$95.31
$94.41
$93.59
$92.82
$92.05
$91.27
$90.48
$89.73
$88.93
$88.15
$87.33

Figure 4: Actual STRIPS Prices vs Predicted Zero-Coupon Bonds Prices
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Price Against Days to Maturity
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0 200 400 600 800 1000 1200 1400

—@— Market Price of a $100 Zero —@&— Model Price of a $100 Zero

Figure 5: Actual STRIPS Prices vs Predicted Zero-Coupon Bonds Prices

Given this, we believe that our model, given some further changes sug-
gested below, could be suited to pricing floating rate payment obligations
based on the SOFR and be used as a short term interest rate forecasting
tool.

3.2.1 Further Possible Changes

Many interest rate models address the existence of credit cycles by incor-
porating mean reversion. While our modified Ho-Lee model is a short term
forecast (and the average length of a credit cycle is 6 years), adding in a
mean reverting term which equals the user’s opinion on 7% (the neutral in-
terest rate) can allow for more sophistication in the model. Since rx is not
known and can only be estimated, we do not explicitly add it to our model.

Our modified Ho-Lee model assumes constant volatility. SOFR volatility
is subject to change temporarily depending on certain events that can affect
liquidity in the overnight collateralized lending market. These could be debt
ceiling crises, financial crises, or cash shortages (as happened in 2019). A
more thorough consideration of volatility could try to pick up on changes in
liquidity and consider a jump diffusion stochastic process with mean reversion
to account for events that can cause a spike in overnight rates.
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