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Abstract

We give a language and a set Σ of sentences of that language such
that any structure A that is a model of Σ is a vector space over Q.
We then give sets Γn for each n such that the vector space given by
A is of dimension n or more exactly when A satisfies Γn with some
variable assignment. Then we show that Cn(Σ) is incomplete and
discuss what extensions make it complete. Throughout the paper we
consider how our conclusions would differ if the vector spaces we were
considering were over a finite field F instead of Q. Finally, we discuss
the implications of these results for determining the dimension of a
vector space given by such a structure A.

1 Introduction

Vector spaces are sets equipped with addition and scalar multiplication (with
members of a field). They constitute an interesting algebraic structure that
can be modeled in a countable first order language when the vector spaces we
want to model are over a countable field. In this paper, we give a language L
for this purpose. Then we give an infinite, though countable, set of sentences
Σ of L such that a structure A is a vector space over the field of rational
numbers Q when A is a model of Σ. We will also give a revised language LF
and a set ΣF such that any structure of LF that satisfies ΣF is a vector space
over F where F is an arbitrary finite field.

We then proceed to show that there exists a set of formulas Γn such that
the vector space given by A is of dimension at least n exactly when A satisfies
Γn with some variable assignment. We will explain why we cannot guarantee
a vector space will have a dimension of exactly n. Then will also give a
set of sentences ∆n such that any structure AF of LF that is a model of ΣF
and that satisfies ∆n is a vector space of dimension exactly n. The primary
motivation behind this is to show that our language L and set Σ provide for
a useful and not just correct description of vector spaces over Q. The same
also applies for LF and ΣF.

We proceed to establish that the consequences of Σ do not constitute
a complete theory by giving an example sentence such that neither it nor
its negation have a deduction from Σ. Then it is shown that the union of
Σ with this sentence form a complete theory and discuss whether they are
other ways of extending Σ to achieve a complete theory.
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In the rest of this section we define L and Σ as well as LF and ΣF. Then
in section 2, we prove their utility by showing that they allow us to form sets
of sentences such that we have a vector space of at least a given dimension
exactly when a model A of Σ satisfies the respective set with some variable
assignment. We manage to give a set of sentences that will guarantee a vector
space over a finite field satisfying the sentences in the set is exactly of a given
dimension. In section 3, we show that Cn(Σ) is incomplete and that we can
extend it to a complete theory by adding a single sentence. We explore what
happens when we try to extend it with different sentences. Last, in section
4, we summarize and discuss the results.

1.1 The Language L for Vector Spaces over Q
.
Let L be a first-order language with equality, the constant symbol 0, the
two place function symbol + and the members of the set {sq | q ∈ Q} where
each sq is a one place function symbol. The constant symbol 0 will be used
to represent the zero vector which is present in every vector field while the
+ function symbol will be used for the vector addition operation. The sq
function symbols are going to represent scalar multiplication of the vector
they are applied to by a specific scalar q.

We note some observations about L. We can divide all symbols in L
in three groups such that group 1 consists of the variable symbols, group
2 consists of all the one place predicate functions, and group 3 consists of
everything else. First, L is infinite because we have infinitely many variable
symbols in it. Second, L is countable. To show this we note that group 1 is
countable by definition, group 2 is finite, and whether group 3 is countable
depends on whether the set {sq | q ∈ Q} is countable. Its cardinality is equal
to the cardinality of Q and the cardinality of Q is equal to the cardinality of
N. Hence group 3 is countable and so is L.

In addition, note that L is not the minimal language we could have used.
First, it features both the universal and existential quantifier for the sake of
simplicity when listing the axioms of vector spaces in L and we could have
accomplished this task without the existential quantifier be it in a longer way.
As it turns out the same applies for the constant symbol 0 which is included
with the purpose of representing the additive identity which appears in the
axioms for vector spaces and is also present in any vector space. When we
give the set Σ we will show that there is a way to give the axioms involving
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the identity without a constant symbol, but we will continue to use it as it
does not complicate any of the proofs in this paper. In addition to using
the existential quantifier as a simplification, we would also allow the usage
of x = y instead of = xy and similarly the usage of x+ y instead of +xy.

1.2 The Set of Axioms for Vector Spaces Σ in L
To list the axioms for vector spaces in our first-order language, we will use
the definition of vector spaces given by Friedberg, Insel, and Spence in their
fifth edition of their linear algebra textbook[2]. A vector space V is defined as
a set equipped with two operations over a field F such that for any x, y ∈ V
and a ∈ F there exists a z ∈ V such that x+ y = z and there exists a unique
w ∈ V such that w = ax and the following conditions hold:

(VS 1) For all x, y ∈ V , x+ y = y + x.
(VS 2) For all x, y, z ∈ V , (x+ y) + z = x+ (y + z).
(VS 3) There exists an element 0 ∈ V such that for all x ∈ V , x+ 0 = x.
(VS 4) For each x ∈ V , there exists a y ∈ V such that x+ y = 0.
(VS 5) For each x ∈ V , 1x = x.
(VS 6) For each a, b ∈ F and for each x ∈ V , (ab)x = a(bx).
(VS 7) For each a ∈ F and for each x, y ∈ V , a(x+ y) = ax+ ay.
(VS 8) For each a, b ∈ F and for each x ∈ V , (a+ b)x = ax+ bx.

We will separate our sentences in eight sets denoted by Ai where i ∈ [1; 8].
We have. Sets A1-A5 consist of a single element whereas sets A6-A8 are
countably infinite. We have:

(A1) ∀x∀y((x+ y) = (y + x))
(A2) ∀x∀y∀z(((x+ y) + z) = (x+ (y + z)))
(A3) ∀x((x+ 0) = x)
(A4) ∀x∃y((x+ y) = 0)
(A5) ∀x(s1x = x)

To satisfy (VS 6 - VS 8) we will need an infinite number of sentences for
each given that there are infinitely many one place function symbols in the
language that serve for multiplying a variable by a specific rational number.
Hence, when I give the sentences for (A6-A8) it may appear as a single sen-
tence but it is in fact infinitely many sentences such that there is one for
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each a, b ∈ Q.

(A6) ∀x((sabx) = (sa(sbx)))
(A7) ∀x∀y((sa(x+ y)) = ((sax) + (say)))
(A8) ∀x((sa+bx) = ((sax) + (sbx)))

There are several things to note before proceeding. First, note that at places
we are treating Q not simply as a set, but as a field. This means that for any
a, b ∈ Q we are guaranteed that there exist ab ∈ Q and a + b ∈ Q. That is
why we are allowing ourselves to write sab and sa+b in the shorthand notation
for describing the form of the infinite sentences needed to satisfy (VS 6) and
(VS 8) respectively. Second, observe that technically we are not required to
have the constant symbol 0 in our language. We will continue to use it for
simplicity but to show how we can satisfy (VS 3) and (VS 4) without it I
put forward:

(A3*) ∃z(∀x((x+ z) = x))
(A4*) ∃z(∀x(((x+ z) = x) ∧ ∃y((x+ y = z))))

Now that we have made these remarks, we let Σ be the union of sets A1-A8.
Then any structure A will be a vector space over the rationals exactly when
A satisfies Σ.

We now proceed to define a language and give a similar set for vector
spaces over an arbitrary finite field F.

1.3 The Language LF for Vector Spaces over F
The language LF again contains an infinite number of variables and the same
connectives as L. We define it in this section. Let LF be a revised language
of L, which does not include the function symbols of the form sq but includes
finitely many one-place function symbols fa for a ∈ F.

We will also let F be such that F has exactly k elements in it. Note that
in addition to being natural, k must be equal to a number pm where m is a
natural number and p is a prime number[4]. This is necessary so that it is
possible that F is a field in the first place and not another kind of an algebraic
structure such as a ring.
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We can now use this language LF to give a set of sentences ΣF that when
satisfied by a structure AF will ensure it is a vector space over F.

1.4 The Set of Axioms for Vector Spaces ΣF in LF

Let ΣF be our revised set of axioms so that instead of groups (A6-A8) we
have groups (A6*-A8*) such that for each a, b ∈ [1; k]:

(A6*) ∀x((fabx) = (fa(fbx)))
(A7*) ∀x∀y((fa(x+ y)) = ((fax) + (fay)))
(A8*) ∀x((fa+bx) = ((fax) + (fbx)))

Since only the scalar multiplication function symbols are different in the
language for vector spaces over F we do not need to change anything about
the sentences in axiom groups (A1-A5). The same observations that we made
when detailing Σ continue to be true. In particular, the constant symbol 0
is again unnecessary but we employ it for simplicity. The same shorthand
conventions apply as well.

It again follows, that any structure AF of LF that satisfies ΣF is a vector
space yet this time it is over the finite field F and not over Q.

2 Dimensions of Vector Spaces Given by A

In this section, we show that 1) for any given natural n a vector space A
(being a model of Σ) has dimension of at least n exactly when it satisfies a
set Γn with some variable assignment s and that 2) there is a set ∆n such
that AF has dimension exactly n exactly when it satisfies ∆n.

We begin with some definitions from Friedberg’s book. We define the
dimension of a vector space V as dim(V ) such that dim(V ) is equal to the
number of vectors in a basis for V and as a special case dim({0}) = 0. We
define a basis for V as a set of linearly independent vectors that span V . A
finite set of vectors is said to be linearly independent if no vector in the set
can be written as a linear combination of other vectors in the set. An infinite
set of vectors is said to be linearly independent if all of its finite subsets are
linearly independent. The span of a set of vectors is defined as the set of
all vectors that can be written as a linear combination of the vectors in the
set. Last, a linear combination of a set of vectors is defined as the vector
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obtained by multiplying every vector in the set by some element of the field
over which the vector space is (not necessarily the same elements of the field)
and adding them together[2].

It is a known result that every basis for a vector space has the same
number of elements and that if a vector space V has dimension n then any
linearly independent set of n vectors is a basis for V [2]. Now note that our
definition of linear independence for a set is equivalent to the sum of each
vector in the set multiplied by a scalar from the field equalling 0 exactly
when every chosen scalar is 0.

The idea in this section is as follows. First, we give a set of formulas Γn

such that any model of Σ that satisfies Γn (with some variable assignment)
has dimension at least n. We also explain why we need free variables to occur
in Γn. After that we proceed with giving a set of sentences ∆n which when
satisfied by a structure AF will ensure it is of dimension exactly equal to n.
Let us proceed with the case for vector fields over Q.

2.1 The Sets Γn for Vector Spaces of Dimension at
Least n

Let us begin with some easy cases for n. When n = 0 we know that the vector
space is exactly {0}. Then Γ0 is empty since every vector space contains 0.
If n = 1 we basically need to ensure that the vector space is not {0}. We set
Γ1 = {∃x(¬(x = 0))}.

It gets more interesting when n ≥ 2. At this point it becomes apparent
that Γn cannot be a set of sentences for n ≥ 2 and has to be a set of formulas
instead. The idea behind this is that if Γn was to be a set of sentences
we would want to have only bound variables in our sentences. At the same
time, however, we will have to ensure that our set guarantees that there exist
at least n linearly independent vectors in any vector space A that satisfies
Γn. However, even in the simplest case when n = 2 we would need infinite
checks to ensure that there exist two vectors x and y such that x ̸= qy for
any q ∈ Q. But we cannot quantify over the scalars since and we represent
them by using function symbols so this procedure would require us to use
an infinite sentence no matter how many sentences are included in Γn. If we
bound x and y by an existential quantifier we will need one check for each
function symbol in L in this single sentence. This, however, would make it
infinite and all sentences are finite. We could also not get around this issue
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by employing the universal quantifier and requiring that any two vectors in a
vector space that are non-zero are linearly independent. One supposed way
to do this would be to have the sentence

∃x∃y(¬(x = y) ∧ ¬(x = 0) ∧ ¬(y = 0))

and the sentences

∀x∀y((¬(x = y) ∧ ¬(x = 0) ∧ ¬(y = 0)) → (¬(sqx = y)))

where we have one such sentence for every sq in our language. Now, let Γ2 be
the set of all such sentences and the sentence that guarantees the existence
of two different non-zero vectors. However, the latter group of sentences will
always be false because for every non-zero vector space B there is a non-zero
element x ∈ B and all sqx are in B while they are not linearly independent
with x. Hence, it is not possible for Γn to be a set of sentences when n ≥ 2.
It needs to be a set of formulas instead.

Let us start with our simple case n = 2 and see what Γ2 might be.
Essentially we want to have free variables v1 and v2 such that for no sq it is
true that v1 = sqv2. Then let Γ2 be the following set:

Γ2 = {¬(v1 = sqv2) |q ∈ Q}

If there does not exist a variable assignment s such that a vector space A
with s satisfies Γ2 then for any two elements of A there exists a scalar such
that one of them equals the respective function symbol applied to the other.
Then there are no 2 linearly independent vectors and hence A is of dimension
0 or 1. If such a variable assignment exists, then there is a set of cardinality
2 that is linearly independent and dim(A) ≥ 2.

Next, we generalize this for any n ≥ 2. We use some shorthand notation.
We define v1 ̸= v2 to mean ¬(v1 = v2). Hence, we define Γn as the following:

Γn = {si1v1 + si2v2 + · · ·+ sinvn ̸= 0 | i1, i2, . . . , in ∈ Q}

Then a generalization of the argument for the case n = 2 ensures that a
model of Σ, A is of dimension at least n if and only if A satisfies Γn with
some variable assignment s.

Unfortunately, we can not give a set of formulas such that a vector space
A satisfying this set has dimension exactly n except when n = 0. When that
is the case we simply require the sentence

∀x(x = 0)
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However, when n > 0 our vector space is infinite. We will need to guarantee
that there are no n+1 linearly independent vectors which would require using
the universal quantifier to bound n+ 1 variables. But then we run with the
infinite sentence problem again because since we cannot quantify over the
elements of Q we will have to produce and infinite conjunction guaranteeing
for no scalars those elements turn out to be linearly independent.

This, however, is not the case when we work out with the finite field
F. We explore how to define sets ∆n of sentences that when satisfied will
guarantee that a vector space AF has dimension exactly n.

2.2 The Sets ∆n for Vector Spaces of Dimension Ex-
actly n

In this section, we give the set of sentences ∆n such that any AF that is a
vector space (satisfies ΣF) and satisfies ∆n has dimension exactly n.

Again, we begin with some trivial cases. When n = 0 we want 0 to be the
only element of AF. Consequently, ∆0 = {∀x(x = 0)}. When n = 1 we want
to guarantee that there is a non-zero vector and that all distinct non-zero
vectors are linearly dependent. Hence we have ∆1 = {∃x(x ̸= 0) ∧ ∀y(x =
f1y ∨ x = f2y ∨ · · · ∨ x = fky)}.

When n ≥ 2 we construct ∆n by first having a sentence that guarantees
the existence of n distinct non-zero vectors (we use x ̸= y for ¬(x = y)):

∃x1∃x2 . . . ∃xn((x1 ̸= 0 . . . xn ̸= 0) ∧ (x1 ̸= x2 ∧ x1 ̸= x3 ∧ · · · ∧ xn−1 ̸= xn))

which we will abbreviate as (An) and then adding the infinite many sentences
of the form

An ∧ ∀x1∀x2 . . . ∀xn(An → (fa1x1 + fa2x2 + · · ·+ fanxn ̸= 0))

where we have one such sentences for all combinations of scalar multiplication
functions different from the 0 multiplication function (we denote this by f0)
but it is actually one of the functions fi for i between 1 and k. We can
employ this formally by shifting a in the definition of fa to be between 0 and
k − 1 and then requiring the sentence

∀x(f0x = 0)

Now, the union of these sentences will guarantee that a vector space AF that
satisfies the union has dimension at least n. To guarantee that the dimension
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is in fact n we need to add a sentence that says:

∀x1 . . . ∀xn+1(An+1 → (F1 ∨ F2 ∨ · · · ∨ Fk1
n+1))

where F1 = (f1x1+f1x2+· · ·+f1xn+1 = 0), F2 = (f1x1+f1x2+· · ·+f2xn+1 =
0), and so on with Fk−1n+1 = (fk−1x1 + fk−1x2 + · · · + fk−1xn+1 = 0). This
sentence makes sure that for any distinct non-zero n+1 elements in AF there
will always be non-zero scalars proving that these n+1 elements are linearly
dependent. And if that is indeed the case for any n + 1 distinct non-zero
elements then the dimension of AF is less than n+ 1.

Finally, the union of this sentence with the sentences ensuring dimension
of at least n guarantees dimension of exactly n. This union is then ∆n.

Having shown some of the things we can accomplish in our model for
vector spaces we now turn the attention to whether the consequences of our
axioms constitute a complete theory.

3 Incompleteness of Cn(Σ) and Its Complete

Extensions

In this section, we will show that Cn(Σ) is incomplete. We will give an
example of a sentence such that neither it nor its negation have a deduction
from Σ. Then we will show that by adding this sentence to Σ we do end up
with a complete theory.

We begin by introducing the notion of categoricity. We use the definition
given by Enderton in his A Mathematical Introduction to Logic. We say that
‘given a cardinal κ and a theory T , “T is κ-categorical iff all models of T
having cardinality κ are isomorphic”[1].

From Enderton we also introduce the Los-Vaught Test:
Let T be a theory in a countable language. Assume that T has no finite

models. (a) If T is ℵ0-categorical, then T is complete. (b) If T is κ-categorical
for some infinite cardinal κ, then T is complete.[1].

We will use these to later prove that our extensions of Σ are complete.
Specifically, we will employ part (b) of the Los-Vaught Test. First, however,
we show that Cn(Σ) is incomplete.
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3.1 A Sentence σ Such That Σ Does not Prove or Dis-
prove σ

Consider the following sentence σ:

∃x(x ̸= 0)

This sentence asserts that there exists an element in any A satisfying it such
that it is not 0. This results in A (when also satisfying Σ) being a non-zero
vector space over Q. Let us first, consider whether Σ ⊢ σ. This is not the
case because there exists a structure A such that A satisfies Σ and A satisfies
Γ1 meaning that dim(A) ≥ 1 and dim(A) < 1 iff A = {0}. One example
of such a structure would be the real numbers over the rationals. Now, let
us consider whether Σ ⊢ ¬σ. This is again not the case since the structure
A = {0} satisfies both Σ and σ. From this we can conclude that it is not the
case that Σ ⊢ σ or that Σ ⊢ ¬σ. But then by the existence of σ, Cn(Σ) is
incomplete.

We now proceed to argue that the theories of Σ ∪ {σ} and Σ ∪ {¬σ} are
complete.

3.2 On the Completeness of Σ ∪ {σ} and Σ ∪ {¬σ}
Next, we want to show that the theory of the extension of Σ with σ or ¬σ are
going to be complete. We will do this by applying the Los-Vaught test. We
show that if κ is the cardinality of the real numbers, then Q is κ-categorical.
We will want to show that the theory of non-zero vector spaces over Q is
categorical in the cardinality of the reals. Then by the test we will conclude
that the theory of non-zero vector spaces over Q is complete.

To show that the theory of non-zero vector spaces over Q is categorical
in the cardinality of the reals, we need to demonstrate that any two models
of this theory with the same cardinality of the reals are isomorphic.

Let V and W be two non-zero vector spaces over Q with the same cardi-
nality of the reals. Since V and W are non-zero, they have a basis, and any
two bases of a vector space have the same cardinality. Let B be a basis of V
and let C be a basis of W , both with the same cardinality of the reals.

Since V and W have the same cardinality of the reals, there exists a
bijection h : B → C between the bases. We can extend h to a linear map
g : V → W by defining g(b) = h(b) for all b in B and then extending
linearly to all of V . That is, for any v in V , we can write v as a finite
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linear combination of basis elements, v = a1b1 + ... + anbn, and then set
g(v) = a1h(b1) + ...+ anh(bn).

It remains to show that g is an isomorphism of vector spaces. To see
this, note that g is a linear bijection (since it is a bijection on the basis and
extends linearly). Moreover, for any q in Q and any v in V , we have g(qv)
= qg(v), since g is linear. Therefore, g preserves the structure of the field Q
acting on V . Thus, g is an isomorphism of vector spaces.

Therefore, we have shown that any two non-zero vector spaces over Q
with the same cardinality of the reals are isomorphic, which implies that the
theory of non-zero vector spaces over Q is categorical in the cardinality of
the reals.

Then by part (b) of the Los-Vaught test we conclude that the theory of
non-zero vector spaces over Q is complete. Now, notice that the theory of
Σ ∪ {σ} refers exactly to that theory as Σ guarantees a vector space over Q
while σ guarantees there exists a non-zero element. But then Σ ∪ {σ} must
be complete. It is also easy to see that Σ∪{¬σ} is complete. That is because
it refers specifically to the vector space {0} and given that we know that it
contains exactly one vector it follows that the theory will be complete.

It is now worth considering whether there are any other ways to extend
Σ, so that we can derive a complete theory. It can be seen that there are
infinitely many sentences by which to extend Σ and have the same theory
we have proven to be complete. These are of the form ¬¬σ, ¬¬¬σ, σ ∧
¬∀x(x + 0 ̸= 0) and so on. We can also always extend Σ to an inconsistent
set and therefore its theory will be complete since every inconsistent theory
is complete. To this we may add a sentence τ that states ∀x(x+0 ̸= 0) which
contradicts the sentence in (A3). This leaves us with 3 theories extending
Cn(Σ) which are complete. However, any other set with a theory that is
consistent but fails to determine whether there exists a non-zero vector in
any A satisfying it will not be able to prove σ or ¬σ and will hence be
incomplete. Therefore, in total three theories are both extensions of Cn(Σ)
and are complete.

We now proceed to summarise our results and draw certain conclusions
from them.
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4 Conclusions

In this paper, we have given languages L and LF to be used to model vector
spaces over Q and an arbitrary random field F respectively. We have also
given two sets Σ and ΣF such that any structures A and AF satisfying Σ and
ΣF respectively are vector fields over Q and F respectively.

We then proceeded to prove the utility of our languages and sets by giving
sets of formulas Γn such that a vector space A satisfying Γn has dimension
of at least n. We have explained why it is impossible to give such a set of
sentences or give a set of formulas such that we are guaranteed dimension n
except when n = 0. We can then conclude that any vector space A such that
A |= ∀x(x = 0) is such that dim(A) = 0. As mentioned we can also have a
minimal bound for the dimension of any A but cannot guarantee any dimen-
sion apart from 0 because there exists no sentence on which this depends.
Moreover, every non-zero vector space over Q has an infinite number of ele-
ments. We have then observed that we can give a set of sentences for each n
such that a vector space over F, AF that satisfies them has dimension at least
n and we can extend them to the set of sentences ∆n which when satisfied
guarantees dimension exactly equal to n. Hence any AF that satisfies ∆n is
such that dim(AF) = n.

We then continued to show that Cn(Σ) is not a complete theory by estab-
lishing that it neither proves nor disproves the sentence σ stating that there
exists a non-zero vector. We have also argued that the theory of non-zero
vectors over Q is complete by showing they are categorical to the cardinality
of the reals and applying the Los-Vaught Test. Then we concluded that the
theories of Σ ∪ {σ} and of Σ ∪ {¬σ} are complete. We have also argued
that the only other complete theory extending Cn(Σ) is the inconsistent the-
ory. We did not argue anything about the completeness or incompleteness
of Cn(ΣF). This problem is addressed by Richard Kaye[3] and may serve as
an inspiration for future discussion.
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