
Construction and Analysis of Greedy Sequences

of Non-Negative Integers

Atanas Iliev

Under the direction of Dr. Katerina Velcheva

October - March 2021

Contents

Abstract 3

1 Introduction 3

2 The Case k = 1 3
2.1 Initial observations . 3

2.1.1 Explanation of the brute force algorithm used for deriving
terms. 4

2.1.2 Stanley’s observation about numerical systems 4
2.2 Finding the terms of G(1) . 5
2.3 Constructing a formula for the calculation of an 6

3 Order of Dependency, Greedy Sequences Where O(G) ≤ 3 7
3.1 Order of dependency O(G) . 7
3.2 Greedy sequences G for which O(G) < 3 8

3.2.1 Range of O(G) . 8
3.2.2 Sequences G for which O(G) = 2, and pi, pj have the same

sign . 8
3.2.3 Sequences G for which O(G) = 2, and pi, pj have different

signs . 10
3.3 Greedy sequences G for which O(G) = 3 11

3.3.1 Stanley sequences . 12
3.3.2 “Stanley-like” sequences 13
3.3.3 “Stanley-like” sequences G where aright is always the next

term . 15
3.3.4 Testing a hypothesis for sequences G3 17

1

4 Greedy Sequences Where O(G) > 3 17
4.1 “Stanley-like” sequences where aright = anext 18

4.1.1 The case O(G) = 4 for a greedy sequence G 18
4.1.2 Terms of the sequences GO where aright = anext 20

4.2 “Stanley-like” sequences where pright = 1−O(G) 22
4.2.1 Sequence G where O(G) = 4 23
4.2.2 Observation about the terms of G4(1, 2) 23
4.2.3 Proving the terms Stanley observed does not violate the

equation given by O(G) 24
4.2.4 Proving the terms Stanley observed are the terms of G4 . 25

4.3 Numerical systems used for derivation of the terms of GO 26

5 Observations About the Length of Greedy Sequences 26
5.1 Length of the Stanley sequence 26

5.1.1 Theorem about 2 ·M . 27

6 Conclusions 28

7 Future Work 29

A C# Programs Source Code 30
A.1 Brute force algorithm for calculating the terms of G(k) 30
A.2 Source code for a program finding numerical systems for Stanley

sequences G(k) . 31
A.3 Source code for a program finding numerical systems for “Stanley-

like” sequences . 33

References 36

2

Abstract

A “greedy” sequence is a number sequence of non-negative integer in
which the first member is 0 every next member is defined as the smallest
integer larger than the last term such that a certain equation is avoided for
two or more terms. We start by analyzing the Stanley Sequence (avoiding
arithmetic progression) beginning with 0, 1, and construct a non-recursive
formula for calculating its terms. We then define some notation and move
on to analyzing different greedy sequences. We use different numerical
systems to do so and try to conjecture what can be achieved by this
approach.

1 Introduction

Let’s define {an} as a “greedy” sequence of integer numbers such that several
terms a0...at−1 are chosen, and every following term ai > ai−1, and ai equals
the smallest such integer for which a certain number of terms avoid a given
equation or a set of equations. One such case is a sequence G where the first
2 terms are chosen (for example a0 = 0, and a1 − 1) in which no 3 terms (not
necessarily consecutive) form an arithmetic sequence.

This is the same as saying that there are no three terms aa, ab, ac for which
aa + ac = 2 · ab [1]

The first few terms of the sequence where k = 1 are: 0, 1, 3, 4, 9, 10, 12, 13, ...

We first examine these sequences for different values of k. Then we provide
a “nice” description for an, and construct a formula for calculating this. Then
we also examine “greedy” sequences beginning in the same way as the original
one but avoiding a different or several different equations.

2 The Case k = 1

This is, obviously, one of the more simple variations of a “greedy” sequence.
In the following sections we will systematize our notation in order to provide a
hierarchy for the different “greedy”” sequences we analyze but for now let’s stick
with the former notation. Let’s denote a “greedy” sequence as G(k) making the
one produced by k = 1, G(1).

2.1 Initial observations

It is a tedious task to calculate many terms of this sequence by hand, as in-
dicated by the growth rate of the sequence. That’s why it can be useful for a
simple console application to be constructed. Its job won’t be to calculate terms
fast, but to calculate them for us the tedious way (by checking for an arithmetic
sequence among all three terms combinations). One such is provided at the end

3

of this paper in C#. [A.1] Please note that all the programs used in this paper
were developed by myself.

The first 20 terms are provided in the table below [Table 1]:

Index: 0 1 2 3 4 5 6 7 8 9
Value: 0 1 3 4 9 10 12 13 27 28
Index: 10 11 12 13 14 15 16 17 18 19
Value: 30 31 36 37 39 40 81 82 84 85

Table 1: The first 20 terms of G(1)

2.1.1 Explanation of the brute force algorithm used for deriving
terms.

Let us quickly explain how the program’s algorithm works. First the program
receives as input from the user two values - n and k - giving the number of terms
desired and the second term of the sequence. Note that by definition the first
term of G, a0 = 0, and that the terms that will be received will have indexes
ranging from 0 to n − 1. An array that will store the terms of the sequence is
then defined and a0 and a1 are defined such that a0 = 0 and a1 = k. Another
variable br is then defined such that initially br = k + 1 which will be used to
calculate the next terms.

The program then uses three loops to calculate the terms from a2 to an−1.
The first is responsible for providing the index of the term - i - and ranges from
2 to n − 1. The other two provide the other two indexes j and l so that ai
avoids forming an arithmetic progression with aj and al. That being said j
ranges from 0 to i− 1 and l ranges from 1 to i− 1. When we have chosen i, j, l
we simply check if 2 · al equals aj + br. If that is the case we increase br by one
and set j and l to their initial values - 0 and 1 respectively. If not then this is
our next term. Therefore we define ai such that ai = br and again increase the
value of br by one. The value of i is then increased by one for the next term
and the process starts again (which resets the values of j and l.

Last, note that this program is by no means fast and is really what one calls
a “brute force” algorithm. Instead its goal is to find the terms of G without
any equations we derive instead checking one by one if the equation we want to
avoid is indeed avoided and picking the the next terms by this operation alone.
Now that we made that clear and explained how the program works, let us move
to some interesting observations.

2.1.2 Stanley’s observation about numerical systems

R. P. Stanley, an emeritus professor at MIT, had an interesting idea that solved
this case. In his honor such “greedy” sequences are sometimes called - Stanley

4

sequences.

Let us write the indexes of these terms in binary and their values in ternary.
For the first 10 terms these are as follows:

Index(2): 0 1 10 11 100 101 110 111 1000 1001
Value(3): 0 1 10 11 100 101 110 111 1000 1001

Table 2: The first 10 indexes and terms of G(1), written in binary and ternary

It can be seen that when expressed in this way the indexes and the values
are the same (in terms of representation, and NOT value).[2]

This remains true, as this paper will prove, for i → ∞ where i is the index
of the term of G(1). This means that one way of calculating ai is writing i in
binary and reading it in ternary. This paper considers such description a “nice”
one. That being said, it is by no means an explicit formula yet. 1

2.2 Finding the terms of G(1)

One of the important results proved in this section (first noted by R. P. Stanley[3])
is the following theorem:

Theorem 1: The members of G(1) are the integers that does not include a
2 when written in ternary.

Proof: To prove that the former observation is true for every i lets consider
what happens when we multiply a number in ternary (by 2). There are three
digits that can be multiplied. For each of them we receive:

0→ 0

1→ 2

2→ 1

where the ‘→’ indicates “is overwritten by”. As one can see the only way for a
2 to be obtained in this way is if the operand is 1.

There are now two things that will want to prove: 1) that the sequence we
described above is indeed free of the equation aa + ac = 2 · ab and 2) that there
is no sequence lexicographically before the one we described above that also
satisfy the former condition.

The first one is particularly easy to prove. First let’s note that aa 6= ac as the
terms in the proposed sequence are by definition different and unique. We shall
also note, again by definition, that both aa and ac are 2-free in their ternary
representation and, hence does not produce carried 1s anywhere when added.

5

Therefore we can be sure that aa + ac possesses at least one 1 in its ternary
representation (at a place where aa differs from ac). The multiplication of ab
by 2 also does not produce carried 1s anywhere for the same reasons. Therefore
it consists only of 0s and 2s in ternary proving the statement.

Now for the second part let’s assume a lexicographically smaller such se-
quence {bn} exists. Let m be minimum where bm 6= am for the first time, and
therefore bm < am. Now consider that all 2-free ternary numbers smaller than
am are exactly a0, a1, ..., am−1, so we may conclude that bm contains at least
a single 2 in its ternary representation. Let α be the number that in ternary
has digit 0 where bm has digit 0 and digit 1 in all other cases. Now let β be
the number that in ternary has digit 1 where bm has digit 1 and digit 0 in all
other cases. Then both α and β are 2-free in ternary and both are smaller than
bm. This means they both must be terms of {bn}. It is now easy to see that
bm + β = α as when we add each digit of β (in ternary) we turn every 1 in bm
into a 2, thus obtaining α.

As we have now proven this first theorem and obtained the values of each
member of G(1) we shall move on to constructing an explicit formula/function
that results in the correct value for ai when provided with input i (the index of
the term). It is also important to note that while the observation was initially
made by Professor Stanley, he did not provide an explicit proof of it in his paper,
only suggesting how it can be done (a different method)[3].

2.3 Constructing a formula for the calculation of an

In order to do so, we will first construct a way to obtain the specific digits of
the number in ternary and then convert them to the number system of base 10.
As we have already established these digits (0s and 1s) are actually the same as
in the binary representation of the index of the term we are looking for. This
implies that the first part of this task is equivalent to finding a way to convert
the index of the term in question from decimal to binary.

We will first explain the method of conversion and will do this by an exam-
ple - converting 10(10) to 1010(2). We start by dividing 10 by 2 and obtaining
5. Since 5 is a whole number and thus we have found a degree of 2 in 10 we
write a 0 at the end of the binary representation. Then 5 divided by 2 is 2.5
so we get the whole part of this and a 1 next to the 0. 2 divided by 2 is again
whole - 1, so we add another 0. We finish by adding the remaining 1 at the front.

Let us now consider how many times should we perform the operation in
order to find the binary representation of an where n is given. One trivial ap-
proach is to use log2 n and since a number of operations must be a whole number
to round it down, hence obtaining blog2 nc.

What we want to do now is divide n by two log2 n times and concluding

6

if we should write down a 0 or a 1 after each time. One way to do this is to
subtract b n2i c from n

2i where i is the degree on which we divide. If they are
equal we will get 0 and if they are not some real number. Then we should just
simply round the whole expression which will result in the wanted 1 if the two
terms are different by more or equal to 0.5. Therefore:[

n

2i
−
⌊
n

2i

⌋]
(1)

Then we have to multiply the received digit by the correct power of 3 since
ultimately we want to read the number in ternary to convert it into decimal.
Since the first division produces the rightest most digit of the binary number
we can conclude that reading it in ternary will correspond to the 0th power of
3. Hence we receive: [

n

2i
−
⌊
n

2i

⌋]
· 3i−1 (2)

Finally, we want to add all powers of 3 to get the term in decimal. This
summation has to consider the number of divisions we will perform on the
index n of the number an we are looking for. We can conclude from equation
(2) that we will always have to add the biggest number of 3 contained in n which
as we have explained above will always be 3blog2 nc. This means the exponents
of 2 on which we will divide n range from 1 to as already established blog2 nc.
Therefore we can expand on (2) in order to conclude the formula as:

an =

blog2 nc∑
i=1

[
n

2i
−
⌊
n

2i

⌋]
· 3i−1 + 3blog2 nc (3)

Notice that while this formula is not nearly as “nice” as we would have
initially hoped as it relies pretty heavily on some piece-wise functions like the
rounding and the floor ones, and involves a sum in it, the formula is still non-
recursive. In other words, we are able to calculate an by using a formula that
does not need to replace the initial input it is given (in our case - n) after each
iteration of the sum.

This concludes the analysis of G(1). In the next sections we will consider
some other cases for k, and what happens when we want to avoid another
equation instead of aa + ac = 2 · ab. First, however, let us get back to our
initial definition of a “greedy” sequence, make some observations about the
dependencies in the to-be-avoided equation(s), and define order of dependency.

3 Order of Dependency, Greedy Sequences Where
O(G) ≤ 3

3.1 Order of dependency O(G)

When we first explain what a greedy sequence (and more specifically what a
Stanley sequence) is we mentioned that the conditions regarding their construc-

7

tions can be summarized in an equation or a set of equations that we want
to avoid. In the case of the Stanley sequences this was the equation for three
consecutive terms of an arithmetic progression. This equation was in the form:
x+ z = 2 · y. We can rewrite this as x− 2 · y + z = 0, and so we want to avoid
this which is equivalent to following x− 2 · y + z 6= 0 where x, y, and z are any
3 terms of the Stanley sequence.

Let us now formulate the term order of dependency. We will say that the
Stanley sequences are of order of dependency 3 since the sum of 3 different terms
multiplied by coefficients should not equal 0.

Now let us formally define the function for the order of dependency O for
a greedy sequence G, so that O(G) = t where t is the number of terms which
when multiplied by various coefficients and added together should not equal 0,
for them to be all terms of G. Therefore for p1...pt 6= 0:

p1 · a1 + p2 · a2 + ...+ pt−1 · at−1 + pt · at 6= 0⇒ O({a}) = t

It is important to understand that here the indexes of the terms are not nec-
essarily corresponding to the actual terms with these indexes, but are used for
illustrative purposes. Let us now note that these are the only type of equations
we will follow with the exception of an > an−1 where an and an−1 are members
of the greedy sequence {a}. Another important note is that if we have more
than 1 equation of this form concerning different terms we can simple add them
together into one that should not equal 0 and use it to calculate the order of
dependency of the sequence.

We will now analyze several easy to describe values of O(G) and how knowing
these values help us draw conclusions or find the members of G.

3.2 Greedy sequences G for which O(G) < 3

First let us identify what values can O(G) where G is a greedy sequence can
assume. Because it counts a number of terms we know immediately that either
O(G) = 0 or O(G) ∈ N. Now remember that by definition if ai and aj are terms
of the greedy sequence G and i < j we know that ai < aj by definition.

3.2.1 Range of O(G)

The former observation, however is the same as following the equation aj−ai � 0
which includes in itself the equation aj − ai 6= 0. Therefore, we can conclude
that just by definition for a greedy sequence G, O(G) ∈ N. Even more this
implies that ∀G, O(G) ≥ 2. We will now examine some easy to analyze cases.

3.2.2 Sequences G for which O(G) = 2, and pi, pj have the same sign

We have already figured that each greedy sequence has an order of dependency
of at least 2. That being said, by the definition of order of dependency, a greedy

8

sequence G for which O(G) = 2 will have to follow the equation:

pi · ai + pj · aj 6= 0

Let us say without loss of generality that j > i. Then, we can rewrite this
as:

pi · ai 6= −pj · aj ⇔ aj 6= −
pi
pj
· ai

Notice that by definition ai and aj are strictly non-negative integer numbers,
and when it comes to the coefficients we know that pi, pj ∈ R, and pi, pj 6= 0.

Now first we will consider the possibility of pi, pj having the same sign (both
being positive or both being negative). This immediately implies that aj should
just avoid being negative because ai ≥ 0 and aj > ai.

Let us summarize three distinct rules we will follow when constructing greedy
sequences of a given order of dependency. First, the 0th term of a sequence will
always be 0. Next, we will always define ai as the smallest number bigger than
ai−1, and third, we will always “choose” and not construct t − 1 terms of the
G sequence where O(G) = t. This is because we can rewrite the definition of
O(G) as a new equation:

p1 · a1 + p2 · a2 + ...+ pt−1 · at−1 6= −pt · at

This implies that we can first construct a term of the sequence by following
a rule different then the second one we defined in the paragraph above for every
greedy sequence only after we have t− 1 terms already defined. Also because of
the restriction an > an−1 we know that if a0 = 0 which is our first restriction
aj 6= 0 for j 6= 0 which are all the other terms.

Because we know that the current sequences of concern are of order of de-
pendency 2 we will not have to define any terms because 2 − 1 = 1 except for
the 0th which is, by definition, equal to 0. Now let us consider the equation
given by the order of dependency. We have already established it is equivalent
to aj not being negative which it never is. Therefore by applying an > an−1
and the restriction about the smallest bigger number we can see that only one
such sequence exists, hence:

G = {0, 1, 2, ...∞}

Let us move to the other possible option about the coefficients before the
terms in the equation given by the order of dependency.

9

3.2.3 Sequences G for which O(G) = 2, and pi, pj have different signs

Look again at the equation given by O(G) = 2 in it’s already transformed
version:

pi · ai 6= −pj · aj ⇔ aj 6= −
pi
pj
· ai

Now we will consider what happens with the terms of G when exactly one
of pi and pj is negative/positive and keep in mind we know that aj > 0 since ji
and therefore j 6= 0. We also can deduce that |pi| > |pj | because again aj > ai.
If the opposite happens the only possible sequence G where only a0 is chosen
and not constructed is equivalent to the one provided when the coefficients are
of the same sign. Another important remark is that if an is the general term
of G because O(G) − 1 = 1 we again only have to choose the 0th which by
definition equals 0.

Now we can move on to the construction of the general term of G. Let us
choose three different integer numbers α, β, γ so that α, β, γ ≥ 0 and α < β < γ.
Now we ask if it is possible for aγ and aβ to satisfy the equation aj > ai without
aγ and aα satisfying it. According to the restrictions discussed above it is not.
Then we can conclude that we only need to consider the relationship between
an and an−1 in order to construct an.

We first start according to our initial restriction with a0 = 0. Now since 0
multiplied by any real number is 0 it is obvious that a1 = 1. Let’s consider an
example equation with given values of pi and pj and try to construct a general
formula for the terms of G based on this example.

Let us use pi = 5 and pj = −3 (notice that the example abides by the former
restrictions for the values of pi, pj). This will make the equation given by the
order of dependency equivalent to:

− 5

−3
· ai =

5

3
· ai 6= aj

The first few terms of the sequence will then be: 0, 1, 2, 3, 4, 6, 7, 8, 9, 11,
It is easy to see that the numbers excluded from this sequence are the natural
numbers which divide 5. However if we had that pi = 6 instead the terms would
have become 0, 1, 3, 5, 7, 9, 11, ... which are all the odd natural numbers or the
ones which do not divide 6/3 = 2. This means that the numbers we will strive
to avoid when constructing the terms of G are the multiples of:

pi
gcd(pi, pj)

(4)

Note that we will define the gcd(a, b) function to only have a positive range
so that for any two real numbers x, y, we have gcd (x, y) > 0.

10

Now we should come up with a non-recursive formula that takes an index n
and calculates an, term of G, without using the value of an−1. This can simply
be done by finding how many additional 1s we will have to add to the index n.
This is trivial and equals to: ⌊

n · gcd (pi, pj)

pi

⌋
(5)

Now to obtain the general term of G, an we simply add (5) to the index n:

an = n+

⌊
n · gcd (pi, pj)

pi

⌋
(6)

We have now finished the analysis of the most simple “greedy” sequences
we move forward to the initial sequence we analyze and some other of the same
order of dependency.

3.3 Greedy sequences G for which O(G) = 3

Let us start by defining some important notation that will utilize which along
side the order of dependency will make it extremely easy to systematize all types
of “greedy” system we will be analyzing as well as the ones we have already ex-
plained.

We will define GO(a1, a2, ...at−2) as a “greedy” sequence G of order of depen-
dency O and terms with indexes 0 to t− 2 equal to 0, a1, a2, ...at−2 respectively.
This means that the sequence we analyzed in the second section of this paper
can now be denoted as G3(1), and the ones we analyzed in the former subsec-
tions of this section as G2.

First, we will again turn our attention to the equation provided by the order
of the dependency of sequences G3. This equation is in the form:

pi · ai + pj · aj + pk · ak 6= 0

.
Notice that this is the first time when will have to “choose” a term of G

instead of apply a formula to construct it. Technically we should have also done
so when O(G) = 2 since O(G) = t− 1 = 2− 2 = 1. Besides a1 there are several
things we can manipulate to achieve infinitely different variations of G3. These
are the different coefficients in front of {an} denoted in the equation as pi, pj , pk.

Let us again rewrite the equation given by the order of dependency O(G) of
G3 so that exactly one term is on the right side of the equation:

pi · ai + pj · aj 6= −pk · ak
We will now define ak as the next term in the sequence we want to find. As

one can see there are many different sequences we can make by changing the
values of the coefficients {pn}. In this subsection we consider two main types.

11

3.3.1 Stanley sequences

First, let us return our attention to Stanley sequences. These are sequences
G with O(G) = 3 where pi, pj = 1 and pk = −2. As noted at the beginning
of this paper Stanley sequences are greedy sequences that avoid a three-term
arithmetic progression.

Because the coefficients are set in the Stanley sequences the only thing we
can modify is what in the beginning of this paper we denoted as k and is simply
the value of a1. In section 2 we proved that the terms of G3(1) are in decimal
their indexes written in binary and read in ternary.

This can be summarized as a really interesting approach. We will attempt
to check if two numbers x, y exists such that the terms of a Stanley sequence
G in the form an are obtained by writing n in a number system of base x and
reading it back into decimal using a number system of base y.

In order to do that we again construct a program in C#. The source code
is provided below in the appendix section of this paper [A.2]. We will now ex-
plain how the program works as well as the ranges of the different variables the
algorithm is checking.

The first part of the code is essentially the same as the one we have explained
at the beginning of chapter two and its goal is to calculate the necessary terms
of G3(k) with respect to k which is inputted by the user alongside n - the num-
ber of terms to be outputted. Again we repeat that this is done by individually
checking if each number that is potentially a term does not follow the equation
the “greedy” sequence avoids, instead of applying some other algorithm we have
suggested.

The latter part is new and has to be explained in a bit more detail. Its
purpose is to calculate the terms of a sequence obtained by writing the index
of the term in a given numerical system and reading it in another. Again three
loops are used - one for the index of the term that is calculated, and two other
for the bases of the two numerical systems used for constructing the said terms.

In order for the index to be transformed into the appropriate numerical sys-
tem, the regular method of conversion is used. The number is continuously
divided by the base of the “writing” numerical system denoted in the source
code as “j2”. This is done as long the number is bigger than 0. The remain-
ders are combined into a single string of digits (and letters if the base is big
enough), that is then in another loop converted into the “reading” numerical
system of base “i2” which happens by multiplying each character (digit/letter)
of the string by the appropriate power of i2. These multiplications are then
summed to receive the appropriate term in decimal.

12

A counter variable that compares the results of the two algorithms that cal-
culate the terms is used. The purpose of it is to calculate how many of the
terms are the same as after all we expect to be calculating the terms of a single
sequence in two different ways. We check for numerical systems with bases up
to 30 and compare the first 100 terms of each sequence.

Unfortunately only when k = 1 a similarity of 100% is reached - which is
also the sequence we already analyzed in section 2. Normally, the values found
for i2 and j2 were 3 and 2 respectively. The cases when the counter variable was
different then 1 (because obviously the term with index 0 is always 0) are such
where the same variable is still to small to be considered a meaningful result
where the error is technical and not rooted in the hypothesis. However, due to
the small amount of data we tested, we are not yet able to conjecture that no
two bases of a numerical system exist for which the terms of a Stanley sequence
G3(k) can be calculated (in decimal) by writing the index of a term in one of
them and reading it back through the other.

That being said, Stanley was able to come up with some interesting observa-
tions concerning his sequences. Namely in one of his papers, he state that it can
be proven through a case by case analysis that the terms of Stanley sequences
for which the second term is a power of 3 or 2 times a power of 3 follow certain
restrictions when written in ternary.[3]

In this paper, we will not delve into them, and will instead consider some
other “greedy” sequences. We do this in an attempt to find more general theories
applying to a broader range of sequences.

3.3.2 “Stanley-like” sequences

Consider again the equation given by the order of dependency. We explained
that the only variables beside the second term of G3 we can manipulate are the
coefficients beside each of the terms participating in this equation. This is how
we rewrote the equation given by O(G) in the beginning of this subsection:

pi · ai + pj · aj 6= −pk · ak

Let us then from now on refer to pk as pright and to ak as aright.

Now in order to explain why aright will not be the term we will be finding
when applying the equation it is important to consider the sequences we will be
analyzing now:

In this sub-subsection we will be changing the value of pright and hence of
−pright. There are several reasons to decide changing exactly this. First, pright
is the only coefficient in the Stanley sequences different than 1 and Stanley
sequences are the only “greedy” sequences where there is even one known ex-
ample of the hypothesis we devised above working. Second, the value of pright

13

in Stanley sequences (which is by definition −2) equals the base of the “writ-
ing” numerical system with opposite signs (binary). Third, in the same paper
Stanley points out another interesting observation where −pright 6= 2 which will
consider in the next section, however.

What we now do is basically test the same hypothesis for this kind of se-
quences which we formally define like this:

Let GO be a “Stanley-like” sequence if GO is “greedy”, has an order of de-
pendency O(G) and has all coefficients in the equation given by O(G) to strictly
equal 1 with exception for pright.

Before we apply a computer program to test our hypothesis let us consider
the special case where pright > 0 too. This means that −pright < 0 and therefore
−pright · aright < 0. However, since pi, pj = 1 it follows that pi · ai + pj · aj > 0.
Therefore this sequence is once again:

G = {0, 1, 2, ...∞}

There is one more interesting case deserving our attention: pright = −1 and
where we include additional criteria that aright is always the number we are
looking for next. This means that we want to construct a sequence in the oppo-
site way of which the Fibonacci sequence is constructed since −pright = 1 and
pi, pj = 1 too.

The first few terms of this sequence will then be: 0, 1, 2, 4, 7, 10, 13, 16, It
is easy to see that every term after the 2 will equal:

1 + 3 · (n− 2) (7)

.
This allows us to easily construct a formula for {an}.To do so first consider

the following two equations: ⌈
n− 2

n+ 4

⌉
(8)

The equation inside the rounding brackets gives −0.5, −0.2, and 0 when n
equals 0, 1, 2 respectively. Also

lim
n→∞

n− 2

n+ 4
= 1

This implies that if we round it up we will always get a 1 except in the cases
described above in which we will get a 0. Now for the second equation we have:⌊

1− n− 2

n+ 4

⌋
=

⌊
6

n+ 4

⌋
(9)

14

Like the previous one we will use (8) for the special cases of 0, 1, 2. This
equation returns 1.5, 1.2, 1 respectively. Also

lim
n→∞

(
1− n− 2

n+ 4

)
= lim
n→∞

6

n+ 4
= 1− 1 = 0

The implication being that if we round it down we will always get a 0 except
for the special cases we discussed above.

Now we need to multiply n by (9) in order to get the value of the special
cases and (7) by (8) for the ones with index bigger or equal to 3. This gives us
the final formula:

an = n ·
⌊

6

n+ 4

⌋
+ (1 + 3 · (n− 2)) ·

⌈
n− 2

n+ 4

⌉
(10)

3.3.3 “Stanley-like” sequences G where aright is always the next term

For the sake of explicitness let us introduce the notation anext for the term we
are finding when checking in the equation given by O(G) for a “Stanley-like”
greedy sequence G at a certain point in the generation of members. In this
part of the section we will analyze the “Stanley-like” sequences for which it is
a criteria that aright = anext.

Please note that aright is defined by pright which is defined as the only non-
one coefficient in the equation given by O(G) for a certain greedy sequence G.

Last, we will always “choose” the smallest possible option for the terms we
need to define before we can apply the equation given by O(G) so in our case
the first two terms will always be 0, 1 respectively.

First, let us consider one more example for such sequence G where O(G) = 3.
This time let pright = pnext = −2. We will have for the equation given by O(G):

ai + aj 6= 2 · anext

We will now find the first few terms of this sequence while keeping in mind
that the a0 = 0 and that a1 = 1. Therefore, we get: 0, 1, 2, 3, 4, 5, 6, It is
easy to see that this sequence is equivalent to:

G = {0, 1, 2, ...∞}

However, now we will try to prove it. We are suggesting that an = n and, in
order to do so, we will observe that the following inequality is true for ∀n ∈ N
bigger or equal to 2:

n− 2 + n− 1 < 2 · n⇔ 2 · n− 3 < 2 · n⇔ 0 < 3

15

Now a quick explanation of why this is enough to prove the initial hypothesis
can be derived by looking into three things. First, the possible values of n in
this inequality are all the values of n for the terms an we could be searching
since a0 = 0 and a1 = 1 by definition. Second, strict smallness implies that
the two side of the inequality are not equal as desired in the equation given by
O(G) and, third, that proving that aright = anext = an is strictly smaller than
an−1 and an−2 is enough to say the equation given by the order of dependency
is met for every ai, aj , anext since the sequence G is, by definition, increasing.

We can now definitively prove that the sequence G as defined in this part of
the chapter is one an the same for every value of pright = pnext ≤ −2. We do
this in the following theorem:

Theorem 2: The members of the “Stanley-like” greedy sequence G3(0, 1)
where aright = anext = an equal there indexes if pright ≤ −2.

Proof: Let n be the index of anext such that anext = an and is the term we
are finding next. Note that the theorem is always true for a0 and a1 since they
are, by definition, equal to 0, 1 respectively. This means that n ∈ N and that
n ≥ 2.

Now we consider the equation given by the order of dependency O(G) = 3
rewritten in the usual way:

ai + aj 6= −pright · an

We will now assume the theorem to be correct which would mean that an = n
for ∀n. Then look at the following inequality:

(n− 2) + (n− 1) < −pright · n

Now we explain why proving this inequality is sufficient to prove the theorem.
First, please note that the sequence is defined as an increasing one because it is
greedy. This implies that proving the inequality for the last two elements before
the one we are looking for in enough to prove it for every too and this same one
we are searching since ax−1 < ax for ∀x ∈ N. Then it is also important that
“<” implies “ 6=” since it is strict. Finally, we want to prove the inequality for ∀n.

That being said, the left side of the equation is equivalent to 2 · n − 3. On
the other hand, for the right side we have that −pright · n ≥ −(−2) · n = 2 · n.
This means we can now state that:

2 · n− 3 ≤ 2 · n⇔ −3 ≤ 0⇔ 0 < 3

This concludes the prove of the inequality and, therefore, the theorem itself.

We will now continue with a program that tests our previous hypothesis
about the Stanley sequences for the “Stanley-like” sequences where aright 6=

16

anext. In the next chapter we will revisit the greedy sequences with this addi-
tional constraint as well for larger values of O(G).

3.3.4 Testing a hypothesis for sequences G3

Let us now consider what happens when −pright ∈ N and pright 6= −1. We
will once more try our hypothesis using a console application because after all
the initial case we analyzed in section 2 is both a Stanley and a “Stanley-like”
greedy sequence. The source code of the program we use is again written in C#
and is provided in the appendix [A.3]. We will now explain how the program
works. Before that, however, please note that we considered −pright = 1 to be a
special case not just because it is easy to describe but also because we initially
expected that is a “writing” and “reading” bases exist, the “writing” one will
equal −pright as is the case when −pright = 2.

The program we use to check if suitable bases of numerical systems describ-
ing the terms of “Stanley-like” sequences exist is pretty similar to the one we
used to check if such bases exist for the different Stanley greedy sequences.
Namely the method of calculating the “true” terms is the same as the one de-
scribed in the very first program we discussed but another variable for −pright
is introduced instead of 2 which also means there is a loop responsible for the
varying range of its value as well as another responsible for checking how many
numbers on the left side of the equation must be summed when checking. The
way we check for suitable systems is also the same since it only depends on the
index of the term we are looking for - n.

The program uses the same ranges for the two bases but now checks values
for pright ranging from −999 to −2. Unfortunately again there are no complete
matches except for the case we solved in the second section of the paper.

Despite the fact the hypothesis was definitively proven wrong for both Stan-
ley and “Stanley-like” greedy sequences there is still more we can achieve by
using numerical systems as a method of describing greedy sequences. It will be
shown in the next section that there are still certain points that can be made
about the terms of a greedy sequence with respect to numerical systems of dif-
ferent bases. The theory that will form around that, however, is relevant for
only one greedy sequence GO for each value of O(G). That being said, we move
to different values of the order of dependency.

4 Greedy Sequences Where O(G) > 3

In this section we will consider greedy sequences GO where O(G) > 3. Until
now we have only been able to analyze specific cases for different values of O(G)
(with the exception of G2 which is particularly easy to describe) despite mak-
ing attempts to generalize our observation and hypothesizing about describing

17

the terms of various greedy sequences using numerical systems of different bases.

We will now try a different approach. We will define a very specific type
of greedy sequences building on definitions and insights from previous sections
and try to make general observations and inquiries with respect to O(G) in
other words we will try to give a specific value for everything but O(G) when
analyzing and proving observations about GO.

4.1 “Stanley-like” sequences where aright = anext

In this part of the chapter we revisit the additional constraint we add to the
“Stanley like” sequences such that aright = anext = an for ∀n keeping in mind
that aright is defined by pright - the only non-one coefficient in the equation
given by O(G) of a greedy sequence G.

4.1.1 The case O(G) = 4 for a greedy sequence G

First, we will, as usual, consider the next possible smallest value (this time in
terms of O(G) and not pright necessarily) in an attempt to gain some additional
insight before trying to make a general statement with regards to O(G). In our
case this is O(G) = 4. Therefore, we have:

ai + aj + ak 6= −pright · an

Let us attempt now to use a similar inequality to the one we use to prove
that G3 = {0, 1, 2, ...,∞} when pright ≤ −2. Taking the terms right next to an
and trying an = n we get:

(n− 3) + (n− 2) + (n− 1) < −pright · n⇔ 3 · n− 6 < −pright · n

Now, it is easy to see that for all values of pright ≥ 3 the inequality is equiv-
alent to −6 < k ·n where n ∈ N and n ≥ 3 and k ∈ Z and k ≥ 0. We now know
that, for ∀pright ≤ −3 , G4 = {0, 1, 2, ...,∞} keeping in mind that the first three
terms are by definition respectively equal to 0, 1, 2.

We move to considering some more interesting values of pright specifically
−1,−2 (remember that we know what happens when pright > 0 and that be-
cause it is a coefficient in the equation given by O(G) it cannot equal zero).

For pright = −1 we have that:

ai + aj + ak 6= an

Consider the first several terms starting from index 0 of the sequence: 0, 1, 2, 4, 8, 15, 22, 29, 36, 43.

There are several things to notice here. First notice what happens when we
have already constructed the terms up to the “8” (index 4) inclusive. We can’t

18

have the next term equal 9 because of 0 + 1 + 8, neither 10 because of 0 + 2 + 8
or 11 because of 1 + 2 + 8. 12, 13, 14 are out too because of 0 + 4 + 8, 1 + 4 + 8,
and 2 + 4 + 8 respectively so it have to be 15.

For the next term we can’t have 16, 17, 18, 20, 21 because we can combine 15
with 0+1, 0+2, 1+2, 0+4, 1+4, and 2+4 respectively. However, 22 = 15+7
is working since neither can seven be constructed by two of the previous term
or it is larger or equal to 8 - the term after 4. This is now sufficient information
to say that every next term will equal to 7 plus the previous one which starts
to resemble the sequence we had for O(G) = 3 when pright = −1. We can also
now construct a formula about this sequence too:

an =

(
2n − n−

⌊
1

n+ 1

⌋)
·
⌊

12

n+ 8

⌋
+ (1 + 7 · (n− 3)) ·

⌈
n− 4

n+ 8

⌉
(11)

This is basically a slightly modified formula to the one we use for G3. We use
n−4
n+8 because it approaches 1 when rounded up (and therefore when subtracted
from 1 and rounded down approaches 0) and has a shifting point at n = 5 in-
stead of the one we used earlier. Also for the first few terms we express them as
a power of 2 equaling their index minus their index with the exception of 0 for
which we need too subtract additional 0 which we do by rounding down 1

n+1 as
this approaches 0 as n→∞ but equals 1 when n = 0,

We now move to our last case for G4 where pright = −2. For the equation
given by O(G) = 4 we will have that:

ai + aj + ak 6= 2 · an

Again we consider the first several terms of the sequence beginning with the
one with index equal to zero: 0, 1, 2, 3, 4, 5, 7, 9, 11, 13. This is a much more
interesting case. It seems that after the four the terms are constructed as the
smallest next odd number. Now let us try and see why exactly this happen. For
the term equal to three we have that (0+1+2)/2 = 1.5 which even rounded up is
smaller than three. Then for the term equal to four we have that (0+1+3)/2 = 2
and that (0 + 2 + 3)/2 = 2.5, and that (1 + 2 + 3)/2 = 3 which again are all
smaller or equal to the last element so we choose the next bigger integer which
in this case is 4. Then (4 + 3 + 2)/2 = 4.5 which is smaller than 5 and equal to
the last defined element when rounded down.

Now we have that (3 + 4 + 5)/2 = 6 so we are forced to skip it and pick 7
instead. We can now clearly see that (3 + 4 + 5)/2 + 1 = (3 + 4 + 7)/2 and
that therefore we will have to skip every odd number. It is easy to prove that
every odd number is a term given that we checked for 3 and 5 and that 1 was
“chosen” in the very beginning.

Let a number x = 2 · y + 1 where y ∈ N and x ≥ 7 is such that x /∈ G4.
This means that x = (ai + aj + ak)/2. We have proven that no number z such

19

that 2|z such that z ≥ 6 and z ∈ G4. Therefore the only even numbers in G4

are 0, 2, 4. If we sum them up and divide them by two we get 3 but 3 is al-
ready in the sequence because of the aright = anext = an criteria. The only other
way to receive a sum such that it is even is if we only use one of these even terms.

If this is 0 then the sum divided by 2 is a number between the odd terms and,
therefore, is of no interest because of the criteria above. If it is 2 then even if the
two odd numbers are the biggest so far we will have (2 + (x− 4) + (x− 2))/2 =
(2x− 4)/2 = x− 2 which is smaller than x. If it is 4 then the sum divided will
equal x − 1 which is both smaller than x and even which concludes the proof.
We can now construct a very simple formula:

an = n ·
⌊

12

n+ 8

⌋
+ (1 + 2 · (n− 3)) ·

⌈
n− 4

n+ 8

⌉
(12)

The formula, we believe, is clear enough to not waste time and space ex-
plaining the minor changes. This, however, is not the best results we could have
hoped for because it does not make it possible to give an easy description for
every value of pright. In the next part of this section we will attempt to derive
a method and a formula for the construction for the terms of this sequences GO
for a given value of O(G) and of pright.

4.1.2 Terms of the sequences GO where aright = anext

Let us begin by describing the usual equation given by O(G). We will take
O(G) = t. Therefore, for Gt we have that:

pi1 · ai1 + pi2 · ai2 + ...+ pit−1
· ait−1

6= −pright · an

We will look at several different values of pright beginning with the simplest
case when pright > 0. Keep in mind that pright 6= 0 since pright is a coefficient
in the equation given by O(G) of Gt and that, by definition, a0, a1, ..., at−2 equal
0, 1, ..., t − 2 respectively. Then since an where n ≥ t − 1 is positive we have
that −pright · an < 0 and that the left side of the equation is strictly positive.
We now have that GO = Gt = {0, 1, 2, ...,∞}.

Proceed by considering the following inequality which earlier in this paper we
proved when proven is sufficient to state that the sequence Gt is again equivalent
to all non-negative integers:

(n− t+ 1) + (n− t) + ...+ (n− 1) < −pright · n

We now expand the left side so that we get:

(t− 1) · n− (t− 1 + t− 2 + ...+ 1) < −pright · n

Even more simplified we get that:

(t− 1) · n− t · (t− 1)

2
< −pright · n

20

Now we can rearrange the inequality so that we can get a clear relationship
between pright and t:

(t− 1 + pright) · n <
t · (t− 1)

2

Keep in mind that t = O(Gt) and, hence t ≥ 2 making the right side of the
inequality positive for ∀t.

There are several ways in which this inequality can prove useful. First no-
tice that since the inequality needs to be true only for positive values of n if
(t − 1 + pright ≤ 0 the inequality is true for ∀n, t. Therefore for ∀pright, t such
that pright ≤ 1− t we have that GO = Gt = {0, 1, 2, ...,∞}.

Now let’s consider what happens when pright > 1 − t. First, we consider
the biggest negative value of pright which is −1. When O(G) = 3 we got:
0, 1, 2, 4, 7, 10, 13, 16, ..., and whenO(G) = 4 we got that: 0, 1, 2, 4, 8, 15, 22, 29, 36, 43.

Let us make some observations about these sequences. At first glance we
can divide the terms in three categories: a0 = 0, ai = 2i−1 where i = {1, 2, ..., t}
and the rest an = 1 + (n − 2) · (2t−1 − 1) for ∀n > t. Before rushing into an
attempt to prove this, however, we will for sure have to consider at least one
more example where we have more terms “chosen” since even the smallest next
will be 3 (when t = 5) which is not a power of two.

Therefore, for the equation given by O(G) = t = 5 for greedy sequence G5

(such that pright = −1) we have:

ai + aj + ak + al 6= an

And, hence the first several terms are: 0, 1, 2, 3, 4, 5, 15, 16, 17, 30, 31, These
seem to break any pattern we have found so far. One interesting, though simple,
thing we can prove is that an = n for ∀n ≤ t where t ≥ 5. This can be done
easily by observing when the first possible sum is bigger than the next term to
be found an:

0 + 1 + 2 + ...+ (t− 2) > an

Now we want to know when the inequality is true if an = n. Therefore:

(0 + 1 + 2 + ...+ (t− 2))− n > 0

The inequality above is equivalent to the following one:

(t− 2) · (t− 1)

2
− n > 0

We have hypothesized that this is true for ∀n ≤ t so we are going to substi-
tute n with t:

(t− 2) · (t− 1)− 2 · t
2

> 0⇔ (t− 2) · (t− 1)− 2 · t > 0⇔ t2 − 5 · t+ 2 > 0

21

It is easy to see that the following inequality is true for every integer bigger
than 4 which completes the proof. We can also try and see if we can know exactly
how many consecutive numbers starting from the beginning of the sequences will
equal their indexes. To do that consider that all possible summations must be
strictly larger than the index of the term we are looking for. This however is
equivalent to the smallest sum being strictly larger to the index. This sum, by
definition, includes t− 1 terms in it and we know that the largest of them will
equal t− 2 given that we are finding an.

With all these in mind we return to the inequality above before substituting
n with t and rearrange:

n <
(t− 2) · (t− 1)

2

This leaves us with:

an = n for ∀n ∈
{

0, ...,
(t− 2) · (t− 1)

2
− 1

}
There are two exceptions for this equation when t equals 2, 3. When we have

that O(G) = 2 the inequality gives us that in order for the index to equal the
value we should have that n < 0 which is impossible since n is a non-negative
integer. However, this is because the inequality was defined for constructed val-
ues of n only and the zero element a0 = 0 was excluded. When t = 3 we have
the same thing with n ∈ 0, ..., 0 again not accounting only for a “chosen” and
not constructed element a1 = 1.

We will now continue the section with some analysis on “Stanley-like” se-
quences for which there is no additional constraint to the term we are finding
next.

4.2 “Stanley-like” sequences where pright = 1−O(G)

Let us start with defining the sequences we are going to observe in this section.
Let us start with a greedy sequence Gt. Look at the order of dependency given
by O(G) = t:

pi1 · ai1 + pi2 · ai2 + ...+ pit−1 · ait−1 + pit · ait 6= 0

We rewrite the equation so only one term is on the right side and we substi-
tute pit with pright and ait with aright:

pi1 · ai1 + pi2 · ai2 + ...+ pit−1
· ait−1

6= −pright · aright

The sequences we will be looking into are such sequences for which in the
above equation pi1 , pi2 ...pit−1

= 1 and pright = −(O(G) − 1) = 1 − t. The last
is equivalent to −pright = t− 1 making the above equation:

ai1 + ai2 + ...+ ait−1
6= (t− 1) · aright

22

The motivation behind this choice (about the value of pright) is based on
the fact that was briefly mentioned in section 3 about the fact that the absolute
value of pright may equal what we called the base of the “writing” numerical
system and this indirectly implies it may equal the base of the system in which
we “read” the number when 1 is subtracted. This is at least the case when
O(G) = 3 as we have proved in section 2.

Last, we will always “choose” the smallest possible option for the terms we
need to define before we can apply the equation given by O(G).

Keep in mind that in the previous part of this chapter we have proven that
if aright must always equal the next term we are looking for we will have a
sequence Gt equivalent to {0, 1, 2, ...,∞}. Because of this we now remove this
criteria and examine the more general case.

4.2.1 Sequence G where O(G) = 4

Consider the sequence we described right above if O(G) = 4. It will be as
follows:

ai + aj + ak 6= 3 · aright
It is always useful to have a handy tool for calculating the terms of such

sequences so we will use a very slightly modified version of the first program
we considered A.1. The only notable difference will be an additional loop for
assigning values for the “chosen” members of the sequence and a replacement
of the “2” in the checking section of the inner most loop with a variable equal
to −pright = O(G)− 1 = t− 1. The source code for this program is provided in
the appendix bellow as well.

4.2.2 Observation about the terms of G4(1, 2)

The first 20 terms of this sequence are provided in a table below [Table 3]. Keep
in mind that the first ones are by definition 0, 1, 2.

Index: 0 1 2 3 4 5 6 7 8 9
Value: 0 1 2 3 4 12 13 14 15 16
Index: 10 11 12 13 14 15 16 17 18 19
Value: 48 49 50 51 52 60 61 62 63 64

Table 3: The first 20 terms of G4(1, 2)

Let us now consider using the numerical system approach that helped us
solving G3. Sticking with the motivation we explained earlier we will try to
write the values of the terms in −pright + 1 = 4. The results are found in the
following table:

23

Index: 0 1 2 3 4 5 6 7 8 9
Value: 0 1 2 3 10 30 31 32 33 100
Index: 10 11 12 13 14 15 16 17 18 19
Value: 300 301 302 303 310 330 331 332 333 1000

Table 4: The first 20 terms of G4(1, 2) written in base 4

There is an interesting observation to be made hare again first noted by
Stanley. According to him, the terms of G4(1, 2) can be shown to be the num-
bers which in base 4 satisfy two conditions. First, only the last digit in the
expansion can be a 2. Second, if a digit anywhere in the expansion equals 1
every digit that follows should equal 0 [3].

We now attempt to prove his conjecture about the terms of G4. First, we
shall prove that these terms satisfy the equation given by O(G) = 4 and then
that they are the smallest such terms.

4.2.3 Proving the terms Stanley observed does not violate the equa-
tion given by O(G)

For the first part of the proof consider that, by definition, ai 6= aj 6= ak since the
sequence is “greedy” and, hence strictly increasing. Now consider that aright
contains only zeroes after a 1 if it contains a 1 in its expansion in base 4. Now
let us consider how the different digits change when multiplied by three in base
4:

0→ 0

1→ 3

2→ 2

3→ 1

Note that the last two result in a carry (of 1 and 2 respectively). Now let us
consider how a term may look like in base 4. We know that only the last digit
can be a 2 and if it is no 1 is present in the term because of the second criteria.
The same goes if the number ends with a 3 and in that case it will consist only
of digits 0 and 3. Such combination is also a part of every other such in which
a 1 is present as the part before the 1. Also a maximum of one 1 or 2 is present
in a term and never both. Let us now consider what happens when we multiply
these types of base 4 numbers by three.

First, consider the terms that does not contain a 2. If such term contains
a digit 1 when multiplied by three it will end with a 3 and a tail of several
digits 0 equal to the original such present. Now we should look at how can this
be achieved by summing up three other terms. One such is to combine three
numbers that also have a 1 at this certain position making the two numbers the

24

same from that point until their ends since only digits equal to 0 can follow a
1. Now, however, consider that the terms must have only digits 0 and digits
3 before the 1. Therefore, the only way to achieve a multiplication of a 3 by
three by summing three terms will also require them to have a 3 and not a 0
at the specific position implying that the three terms were from the start the
same and, hence do not exist.

Another ways we can get a 3 are adding (0 + 0 + 3), (0 + 1 + 2), (1 + 3 + 3)
and (2 + 2 + 3). Beginning with (0 + 0 + 3) both the multiplication and the
addition result in a 3 without carry so a contradiction may come from another
point mainly two of these terms being the same. If we use the options with
three different digits we will get no carry again and will achieve a contradiction
by proving such an element none existent when adding other digits. First if the
digit before the 1 is a 0 we will have to use either (0 + 0 + 0) or 0 + 1 + 3 since
0 + 2 + 2 does not work for obvious reasons.

This is the way in which the analysis is done notably looking at a very tedious
case by case analysis resulting in either a contradiction due to a lack of difference
between elements or lack of options in which to add. The whole analysis is
not included because we have shown examples of how cases are discarded and
because of their large number it becomes an inconvenience to go over each one
of them. We will now focus on showing how to prove that there are no any
smaller terms satisfying the equation given by O(G).

4.2.4 Proving the terms Stanley observed are the terms of G4

Suppose a lexicographically smaller sequence H4 exists where {bn} is the general
term. Then let m be the smallest number for which bm 6= am which implies
that bm < am. Now because all the numbers smaller than am satisfying the
two criteria set by Stanley are exactly a0, a1, ..., am−1 we can conclude that bm
does not satisfy one of them. If bm has a digit 2 not on the very end let us have
such three terms of H4, α, β, γ such that α has a digit 1 where bm has a digit 1
and β has a digit 1 where bm has a digit 2 and γ has a digit 3 where bm has a
digit 3 and has a digit 1 where bm has a digit 2 unless bm = 20 in which case
the example is simply 10 + 3 + 1 or similar where the first digit is a 2 and the
others are 0 we simply add the needed digits 0 to 10, 3, 1.

The other possible criteria to be broken is if bm has a digit different then 0
after a digit 1. In this case we will construct α, β, γ in the same way by swapping
the digit that will cause the example to fail with either 3 or 0 and swapping
the following digit with either an appropriate carry that is obtained if in need
of 1 by (3 + 3 + 3) and if in need of two by 3 + 3 + 0 keeping the 0 on α such
that we move the 1 of α to the leftest 1 in bm. and swapping a 0 in β, γ to the
two most right digits 1 in bm An exception to this method is bm = 21 when the
combination we use is 12 + 2 + 0 and any of the form where bm begins with 21
and only digits 0 follow in which case we add the needed digits equal to 0 to

25

12, 2, 0.

We now take some time for some general remarks about how numerical
systems can be used to derive terms or at least gain insight about them of the
“Stanley-like” greedy sequences.

4.3 Numerical systems used for derivation of the terms of
GO

There are more things that can be said about G4 and GO in general and is
very possible that there are ways to incorporate numerical systems in deriving
properties of their terms. Based on the data we received from the programs we
used it may be sufficient to conjecture that apart from G3 there exist no other
“Stanley-like” sequence for which a “writing” and “reading” bases of numerical
systems exist.

It also seems by the examples we considered that the values of O(G) and
hence −pright are clear indicators of the bases in which to try and represent the
values if not the indexes of the terms of such sequences. Finally, it is interesting
if there exist any other values of t for which there exist a certain digit not present
in the said expansion (of a certain base) for such greedy sequence.

5 Observations About the Length of Greedy Se-
quences

In this chapter we will focus on some common properties among the various se-
quences we’ve discussed so far. We will also define and investigate some intrigu-
ing theorems that may help us with the further analysis goals we set ourselves
in previous sections. First, let us look at the general Stanley sequence.

5.1 Length of the Stanley sequence

First let us return to the definition of a Stanley sequence: an increasing greedy
sequence {a} such that no three elements aa, ab, ac exists so that aa+ab = 2 ·ac.

We can set an arbitrary restriction on the sequence by artificially bounding
it above. Let us define M as an upper bound of {a}. Then we can define N as
a ”maximum” Stanley sequence - a bounded above greedy sequence such that it
has a maximum number of elements equal to n(M). It is interesting to see if it is
possible to come up with some estimate for the value of n(M) = n for a given M .

We will begin with the following theorem which is true for ∀M ≥ 8. Please
note that theorem is also true for the values 4− 6 but wrong when M = 7.

26

5.1.1 Theorem about 2 ·M

We formulate:

Theorem 3: n(2 ·M) ≤M for ∀M ≥ 8 such that M ∈ N

Proof: It is quite easy to prove the observation by induction. First, we derive
that because a1 < a2 < a3 < ... < an−1 < an is a N sequence, then:

N + 1− an < N + 1− an−1 < ... < N + 1− a2 < N + 1− a1 (13)

will also be a N sequence.

Accordingly for any integer w < a1 we will have that:

a1 − k < a2 − k < a3 − k < ... < an−1 − k < an−2 − k (14)

will also be a N sequence.

Therefore, it is easy to conclude that:

n(X + Y) ≤ n(X) + n(Y) (15)

Now let us move our attention to the inductive part of the proof. The base
we will be considering is M = 4. Striving for contradiction, let us assume that
n(8) ≥ 5. From (13) and (14) it follows that at least the number 1 and two
larger integers less or equal to 4 are contained in {a}. This leaves room for just
two possible sets - 1, 2, 4 or 1, 3, 4. Evidently, none of these combinations leads
to a case such that n(8) ≥ 5 and it is easy to see that n(8) = 4 because of the
sequence 1, 2, 4, 5.

We have now established the base for our proof. First, we observe some
examples. Consider n(10) for a moment. Let us assume that n(10) ≥ 6. Then,
from (14) and n(8) it follows that 1, 2, 9, 10 are contained in {a} and because the
sequence is greedy the only possible combination that remains is: 1, 2, 4, 7, 9, 10
(as 3, 5, 6, 8 cannot occur because of the original 4 members) but this is also
impossible because of 1, 4, 7 which is an arithmetic sequence. Therefore, be-
cause of 1, 2, 4, 9, 10 we can conclude that n(10) = 5. The next smallest possible
example will be n(12). If n(12) ≥ 7 we know by the same logic that 1, 2, 11, 12
are present in the collection. from (14) and n(8) = 4 we know that 4, 9 occur
too. It is easy to see that this does not leave place for other members. It is pos-
sible to conclude that r(12) = 6 because of the previous sequence. Now, hence
1, 2, 4, 5, 10, 11, 13, 14 are in the N sequence we know that r(14) = 7. There-
fore, it follows from (15) that n(16) ≤ 8, n(18) ≤ 9, n(20) ≤ 10, n(20) ≤ 10,
n(22) ≤ 11.

From here it is relatively easy to build up the induction. We first assume
that the theorem is true for 2 ·M − 8. Hence, from (15) it follows that:

n(2 ·M) ≤ n(2 ·M − 8) + n(8) < M − 3 + 4 = M + 1

27

, which is enough to conclude the theorem because the special cases for this
theorem 16, 18, 20, 22 have already been established.

6 Conclusions

In this section we are going to summarize what has been shown, proven, con-
structed, and conjectured in this paper.

For the Stanley sequence G(1) it was proven that the terms are the numbers
which ternary expansion does not include a digit equal to 2 as first noted by R.
P. Stanley. In other words one way to derive them is writing their indexes in
binary and reading them in ternary. Based on that a formula for calculating an
for a given n ≥ 0 has been constructed.

We then introduced useful notation for characterizing greedy sequences by
inventing a property of the greedy sequence, called order of dependency denoted
by O(G) and have shown it has a range of bigger or equal to 2.

A complete analysis of O(G) = 2 followed alongside a formula for construct-
ing it’s terms when the two coefficients present in the equation are of different
signs since the sequence when they are of the same is simply all non-negative
integers.

We then considered what has been done by Stanley for O(G) = 3 and intro-
duced different classes of greedy sequences: Stanley sequences, “Stanley-like”
sequences, and “Stanley-like” sequences where aright = anext. For all of them
we ran a computer simulation to test if two numerical systems exist that can
be used to derive the terms of G3 as in the original sequence we considered.
Based on the results and ranges we used, we conjectured at the end of the pa-
per that none other such pair exists. For ”Stanley-like” sequences we shown
the terms of the sequences for positive values of pright independent of O(G) and
for “Stanley-like” sequences where aright = anext we have shown and proven a
method for deriving its terms when O(G) = 3 and constructed a formula for
that depending on the value of pright.

For value of O(G) > 3 we have completely analyzed the “Stanley-like” se-
quences where aright = anext when O(G) = 4 and have constructed a formula
for calculating its terms. For values of the order bigger than 4 we have shown
how many consecutive terms starting from a0 have values equal to their indexes
and have proposed a skeleton for a proof of Stanley’s observation about how
numerical system of base 4 can be use to describe the terms of the “Stanley-
like” sequence G4(1, 2). We have also proposed and refuted a simple hypothesis
about the first several terms of the “Stanley-like” sequences where aright = anext
dealing with their seeming formation’s relationship with powers of 2.

28

7 Future Work

There are many more insights to be acquired when it comes to the various
greedy sequences we have now analyzed. We divide our propositions based on
the classification of the said greedy sequence:

For Stanley sequences regular values of k found by professor Stanley can
be analyzed to see if a relationship between −pright or k and a base in which
members of the sequence have clear properties apart from ternary can be found.

For “Stanley-like” sequences a much wider analysis using a console appli-
cation must be performed after a suitable program is developed to see if our
hypothesis about the connection between −pright and the base of the “reading”
numerical system actually holds any truth. After this is completed a general for-
mula may be constructed given an index n, a value of O(G) = t, and a value of
pright to derive the terms of the said sequence GO(0, 1, ..., t−2). It is also impor-
tant to check if there exist a way to remove the constraint about the non pright
indexes and still have a clear connection to a numerical system which can per-
haps be done by using the floor function and setting up a common denominator.

For “Stanley-like” sequences with the additional constraint imposed on anext
a similar computer simulation with bigger ranges must be performed. After that
is done we can consider using math with combinations to try and see how exactly
new terms are defined and probably construct a formula using a combination of
t elements where t equals the O(G) value of the sequence to a certain power of
which to choose n where n equals the index of the term to be found.

In co conclusion, some general remarks that can be helpful with further
research. It is interesting to try and prove our conjecture at the end of the
paper about the “writing” and “reading” bases which may also need some clar-
ification or even reformatting as it is now to abstract in giving any important
information. It is also interesting to consider that the “clarity” with which one
is able to derive term of a given sequence GO decreases really fast with the
increase of O(G) given the examples O(G) = 3 and O(G) = 4. That being said,
we will think of additional constraints that can help increase the “clarity” and
when impose may even present a possibility for the disproving of the conjecture.

Finally, I want to thank my mentor, Katerina Velcheva, for the support she
has been providing me, the time she has devoted for my many questions, and
all the other ways in which she has been most helpful and irreplaceable. I want
to say that I think I have learned much about a topic I am genuinely interested
in and the field of research in general despite this being the first such project of
my own, and am really eager to continue developing it in the following months.
Thank you too for devoting your time and reading this paper to the end!

29

A C# Programs Source Code

A.1 Brute force algorithm for calculating the terms of
G(k)

using System ;

namespace GreedySequences
{

class Program
{

stat ic void Main(string [] a rgs)
{

Console . WriteLine (” Input a natura l number n : ”) ;
int n = int . Parse (Console . ReadLine ()) ;
Console . WriteLine (” Input a natura l number k : ”) ;
int k = int . Parse (Console . ReadLine ()) ;
Console . WriteLine (” Ca l cu l a t ing the f i r s t n terms o f the greedy ” +
” sequence beg inning with 0 , ”+ k . ToString () +” : ”) ;
int [] a = new int [1 0 0 0] ;
a [0] = 0 ;
a [1] = k ;
Console . Write (a [0] . ToString () + ” ”) ;
Console . Write (a [1] . ToString () + ” ”) ;
int br = k + 1 ;

for (int i = 2 ; i < n ; i++)
{

for (int j = 0 ; j < i ; j++)
{

for (k = j + 1 ; k < i ; k++)
{

i f ((2 ∗ a [k]) == (a [j] + br))
{

br++;
j = 0 ;
k = j + 1 ;

}
}

}
a [i] = br ;
br++;
Console . Write (a [i] . ToString () + ” ”) ;

}
Console . WriteLine () ;

}

30

}
}

A.2 Source code for a program finding numerical systems
for Stanley sequences G(k)

using System ;
using System . Numerics ;
using System . Threading ;

namespace GreedySequences
{

class Program
{

stat ic void Main(string [] a rgs)
{

int k = 1 ;
for (k = 1 ; k < 1000 ; k++)
{

int [] a = new int [1 0 0 0] ;
int [] b = new int [1 0 0 0] ;
a [0] = 0 ;
a [1] = k ;
b [0] = 0 ;
b [1] = k ;
int br = k + 1 ;
int equa l s = 2 ;
for (int i = 2 ; i < 100 ; i++)
{

for (int j = 0 ; j < i ; j++)
{

int c = k ;
for (c = j + 1 ; c < i ; c++)
{

i f ((2 ∗ a [c]) == (a [j] + br))
{

br++;
j = 0 ;
c = j + 1 ;

}
}

}
a [i] = br ;
br++;

}

31

int i 2 = 3 ;
int j 2 = 2 ;
for (i 2 = 3 ; i 2 < 30 ; i 2++)
{
for (j 2 = 2 ; j 2 < i 2 ; j 2++)
{
for (int k2 = 2 ; k2 < 100 ; k2++)
{

int remainder ;
string r e s u l t = string . Empty ;
int o = k2 ;
while (o > 0)
{

remainder = o % j2 ;
o /= j2 ;
r e s u l t = remainder . ToString () + r e s u l t ;

}
int r e s u l t I n d e x = int . Parse (r e s u l t) ;
int sum = 0 ;
int w2 ;
int y = (int) (Math . Floor (Math . Log (r e su l t Index , 1 0))) ;
for (int w = 0 ; w <= y ; w++)
{

w2 = r e s u l t I n d e x % 10 ;
r e s u l t I n d e x /= 10 ;
sum += (int) (w2 ∗ Math .Pow(i2 , w)) ;

}
b [k2] = sum ;
i f (b [k2] == a [k2]) equa l s++;

}
i f (equa l s >= 90)
{
Console . WriteLine (”The equat ion to be avoided has a” +
” second term : ” + k) ;
Console . WriteLine (”The index numerica l system i s o f base : ” +
i 2) ;
Console . WriteLine (”The term numerica l system i s o f base : ” +
j2) ;
Console . WriteLine () ;
}
equa l s = 2 ;
}

}
a [0] = 0 ;
a [1] = k ;
b [0] = 0 ;

32

b [1] = k ;
br = k + 1 ;

}
}

}
}

A.3 Source code for a program finding numerical systems
for “Stanley-like” sequences

using System ;
using System . Numerics ;
using System . Threading ;

namespace GreedySequences
{

class Program
{

stat ic void Main(string [] a rgs)
{

int k = 1 ;
int [] a = new int [1 0 0 0] ;
int [] b = new int [1 0 0 0] ;
a [0] = 0 ;
a [1] = k ;
b [0] = 0 ;
b [1] = k ;
int br = k + 1 ;
int equa l s = 2 ;
for (int x = 2 ; x < 1000 ; x++)
{

for (int i = 2 ; i < 100 ; i++)
{

for (int j = 0 ; j < i ; j++)
{

for (k = j + 1 ; k < i ; k++)
{

i f ((x ∗ a [k]) == (a [j] + br))
{

br++;
j = 0 ;
k = j + 1 ;

}
}

}

33

a [i] = br ;
br++;

}
int i 2 = 3 ;
int j 2 = 2 ;
for (i 2 = 3 ; i 2 < 30 ; i 2++)
{
for (j 2 = 2 ; j 2 < i 2 ; j 2++)
{
for (int k2 = 2 ; k2 < 100 ; k2++)
{

int remainder ;
string r e s u l t = string . Empty ;
int o = k2 ;
while (o > 0)
{

remainder = o % j2 ;
o /= j2 ;
r e s u l t = remainder . ToString () + r e s u l t ;

}
int r e s u l t I n d e x = int . Parse (r e s u l t) ;
int sum = 0 ;
int w2 ;
int y = (int) (Math . Floor (Math . Log (r e su l t Index , 1 0))) ;
for (int w = 0 ; w <= y ; w++)
{

w2 = r e s u l t I n d e x % 10 ;
r e s u l t I n d e x /= 10 ;
sum += (int) (w2 ∗ Math .Pow(i2 , w)) ;

}
b [k2] = sum ;
i f (b [k2] == a [k2]) equa l s++;

}
i f (equa l s >= 90)
{
Console . WriteLine (”The equat ion to be avoided has a” +
” c o e f f i c i e n t value o f : ” + x) ;
Console . WriteLine (”The index numerica l system i s o f base : ”
+ i 2) ;
Console . WriteLine (”The term numerica l system i s o f base : ”
+ j2) ;
Console . WriteLine () ;
}
equa l s = 2 ;

}
}

34

k = 1 ;
a [0] = 0 ;
a [1] = k ;
b [0] = 0 ;
b [1] = k ;
br = k + 1 ;
}
}

}
}

35

References

[1] 18.821 project laboratory in mathematics: Project descriptions. 2016.

[2] N. J. A. Sloane and Simon Plouffe. The encyclopedia of integer sequences,
academic press. 1995.

[3] R. P. Stanley and A. M. Odlyzko. Some curious sequences constructed with
the greedy algorithm. 1978.

36

